ICS 141: Discrete Mathematics I (Fall 2014)

3.3 Complexity of Algorithms

Commonly Used Terminology for the Complexity of Algorithms

Complexity Terminology
O(1) Constant complexity
O(logn) Logarithmic complexity
©(n) Linear complexity
©(nlogn) Linearithmic complexity
O(n?) Polynomial complexity
©(b"), where b > 1 | Exponential complexity
O(n!) Factorial complexity
33pg229#1

Give a big-O estimate for the number of operations (where an operation is an addition or a multi-
plication) used in this segment of an algorithm.

t:=0
for::=1to3
forj:=1to4
ti=t+1ij

t + 125 will result in 2 operations per loop iteration (one multiplication and one addition).

The j-for loop will execute ¢ + 77 4 times.

The ¢-for loop will execute 3 times.

Since the j-for loop is executed for every iteration for the i-for loop, then we have 2 -3 -4 = 24
total operations.

Therefore, the algorithm is O(1) (i.e. constant complexity).

33pg229#3

Give a big-O estimate for the number of operations, where an operation is a comparison or a mul-
tiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions
in the for loops, where ay, as, ..., a,, are positive real numbers).
m:=0
fori:=1ton
forj.=i+1ton
m = max(a;a;, m)

For the first iteration of the i-for loop (the outer loop), the j-for loop (the inner loop) will run 2 to
n times (n — 1 times).
For the second iteration of the i-for loop, the j-for loop will run 3 to n times (n — 2 times).

For the third to the last iteration of the i-for loop, the j-for loop will run n — 1 to n times (2 times).
For the second to the last iteration of the i-for loop, the j-for loop will run from n to n times (1



ICS 141: Discrete Mathematics I (Fall 2014)

time).
For the last iteration of the ¢-for loop, the j-for loop will run O times because 2 + 1 > n.
Now we know that the number of times the loops are run is

14243+...+4(n—=2)+(n—1)=n(n—-1)/2

So we can express the number of total iterations as n(n — 1)/2.
Since we have two operations per loop (one comparison and one multiplication), we have 2-n(n —
1)/2 = n* — n operations.

So f(n)=n%*—n
f(n) <n*forn > 1.
Thus, the algorithm is O(n?) with our witnesses C' = 1 and k = 1.

3.3 pg 230 #21

What is the effect in the time required to solve a problem when you increase the size of the input
from n to n + 1, assuming that the number of milliseconds the algorithm used to solve the problem
with input size n is each of these function? [Express you answer in the simplest form possible,
either as a ratio or a difference. Your answer may be a function of n or a constant.]

a) logn
log(n + 1) —log(n) = log((n +1)/n)

Note that as n grows large, the expression ((n + 1)/n) approaches 1 and that log 1 = 0.
This means that the required time for n + 1 is negligible.

b) 100n
100(n 4 1) — 100n = 100n + 100 — 100 = 100
This means that 100 additional ms is required.

c) n?
m+1)2?=n?=n’+2n+1-n>=2n+1
Additional 2n + 1 ms is required.

d) n?
(n+1P2—n*=n*+3n>+3n+1-n*>=3n*>+3n+1
Additional 3n? + 3n + 1 ms is required.

e) 2"
2n+1/2n =9
2 times as long.

g) n!

(n+1D!/nl=n+1
n + 1 times as long.



