13.2 Finite-State Machines with Output

A finite-state machine $M=\left(S, I, O, f, g, s_{0}\right)$ consists of

- a finite set S of states
- a finite input alphabet I
- a finite output alphabet O
- a transition function $f(f: S \times I \rightarrow S)$
- an output function $g(g: S \times I \rightarrow O)$
- an initial state s_{0}

State	Input	
	0	1
s_{0}	$s_{0}, 1$	$s_{1}, 0$
s_{1}	$s_{0}, 1$	$s_{2}, 1$
s_{2}	$s_{2}, 1$	$s_{1}, 0$

Types of Finite-State Machines

- Mealy machines: outputs correspond to transitions between states
- Moore machine: output is determined only by the state

Language Recognizer

Let $M=\left(S, I, O, f, g, s_{0}\right)$ be a finite-state machine and $L \subseteq I^{*}$. We say that M recognizes (or accepts) L if an input string x belongs to L if and only if the last output bit produced by M when given x as input is a 1 .

13.2 pg. 863 \# 1

Draw the state diagrams for the finite-state machines with these state tables.
a)

State	Input	
	0	1
s_{0}	$s_{1}, 0$	$s_{0}, 1$
s_{1}	$s_{0}, 0$	$s_{2}, 1$
s_{2}	$s_{1}, 0$	$s_{1}, 0$

b)

State	Input	
	0	1
s_{0}	$s_{1}, 0$	$s_{0}, 0$
s_{1}	$s_{2}, 1$	$s_{0}, 1$
s_{2}	$s_{0}, 0$	$s_{3}, 1$
s_{3}	$s_{1}, 1$	$s_{2}, 0$

13.2 pg. 863 \# 3

Find the output generated from the input string 01110 for the finite-state machine with the state table in
a) Exercise 1(a).

The state transition sequence is:
$s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow s_{1} \rightarrow s_{2} \rightarrow s_{1}$
Our output is: 01010
b) Exercise 1(b).

The state transition sequence is:
$s_{0} \rightarrow s_{1} \rightarrow s_{0} \rightarrow s_{0} \rightarrow s_{0} \rightarrow s_{1}$
Our output is: 01000

Lecture Notes 25 Exercise

Construct a finite-state machine with output that produces a 1 if and only if the last 3 input bits read are 0s.

State	Input	
	0	1
s_{0}	$s_{1}, 0$	$s_{0}, 0$
s_{1}	$s_{2}, 0$	$s_{0}, 0$
s_{2}	$s_{2}, 1$	$s_{0}, 0$

13.2 pg. 864 \# 9

Construct a finite-state machine that delays an input string two bits, giving 00 as the first two bits of output.

s_{0} corresponds to the last two bits having been $00, s_{1}$ corresponds to the last two bits having been $01, s_{2}$ corresponds to the last two bits having been $10, s_{3}$ corresponds to the last two bits having been 11 .

