10.3 Representing Graphs and Graph Isomorphism

Adjacency Lists

- Can be used to represent a graph with no multiple edges
- A table with 1 row per vertex, listing its adjacent vertices.

Vertex	Adjacent Vertex		
a	b, d		
b	a, c		
c	b, d		
d	a, c		

Directed Adjacency Lists

• 1 row per vertex, listing the terminal vertices of each edge incident from that vertex.

Initial Vertex	Terminal Vertices		
a	b		
b	С		
С	d		
d	a		

Adjacency Matrix

Let the *adjacency matrix* $A_G = [a_{ij}]$ of a graph G is the $n \times n$ (n = |V|) zero-one matrix, where $a_{ij} = 1$ if $\{v_i, v_j\}$ is an edge of G, and is 0 otherwise.

Γ	0	1	0	1]
	1	0	1	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$
	0	1	0	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$
	1	0	1	0

• Can extend to graphs with loops and multiple edges by letting each matrix elements be the number of links (possibly > 1) between the nodes.

Incidence Matrices

Let G = (V, E) be an undirected graph with $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_m\}$. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $M = [m_{ij}]$ where $m_{ij} = 1$ if e_j is incident with v_i , and is 0 otherwise.

Graph Isomorphism

The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are *isomorphic* if there exists a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an *isomorphism*. Two simple graphs that are not isomorphic are called *nonisomorphic*.

Graph Invariants

Properties preserved by isomorphism of graphs.

- must have the same number of vertices
- must have the same number of edges
- must have the same number of vertices with degree k
- for every proper subgraph g of one graph, there must be a proper subgraph of the other graph that is isomorphic of g

10.3 pg. 675 # 1 & # 5

Use an adjacency list and adjacency matrix to represent the given graph.

Vertex	Adjacent vertices	Γο 1	1
a	b, c, d		1
b	a, d		0
С	a, d		1
d	a, b, c		T

10.3 pg. 675 # 3 & # 7

Use an adjacency list and adjacency matrix to represent the given graph.

Initial Vertex	Terminal Vertex	Γ1 1	1	1
a	a, b, c, d	$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	1	1
b	d		0	
С	a, b		1	1
d	b, c, d		T	1_

10.3 pg. 675 # 17

Draw an undirected graph represented by the given adjacency matrix.

10.3 pg. 676 # 27

Use an incidence matrix to represent the graph.

			e_3			
a	1	0	0	0	0	٦
b	0	1	1	1	0	
c	1	0	0	1	1	
d	0	1	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	0	1	

10.3 pg. 667 # 35

Determine whether the pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

This graph is isomorphic. One isomorphism is $f(u_1) = v_1$, $f(u_2) = v_3$, $f(u_3) = v_5$, $f(u_4) = v_2$, and $f(u_5) = v_4$.

10.3 pg. 667 # 39

Determine whether the pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

This graph is isomorphic. One isomorphism is $f(u_1) = v_5, f(u_2) = v_2, f(u_3) = v_3, f(u_4) = v_6, f(u_5) = v_4$, and $f(u_6) = v_1$.

10.3 pg. 667 # 41

Determine whether the pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

These graphs are not isomorphic. Consider the two vertices of degree 3 (u_3 and u_6) in the first graph. They are within the neighborhood of u_5 . However, in the second graph, the two vertices of degree 3 are not within the neighborhood of a common vertex. Thus, they are not isomorphic.