10.3 Representing Graphs and Graph Isomorphism

Adjacency Lists

- Can be used to represent a graph with no multiple edges
- A table with 1 row per vertex, listing its adjacent vertices.

Vertex	Adjacent Vertex
a	b, d
b	a, c
c	b, d
d	a, c

Directed Adjacency Lists

- 1 row per vertex, listing the terminal vertices of each edge incident from that vertex.

Initial Vertex	Terminal Vertices
a	b
b	c
c	d
d	a

Adjacency Matrix

Let the adjacency matrix $A_{G}=\left[a_{i j}\right]$ of a graph G is the $n \times n(n=|V|)$ zero-one matrix, where $a_{i j}=1$ if $\left\{v_{i}, v_{j}\right\}$ is an edge of G, and is 0 otherwise.

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- Can extend to graphs with loops and multiple edges by letting each matrix elements be the number of links (possibly >1) between the nodes.

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 0 & 1 & 0 \\
0 & 1 & 1 & 2 \\
1 & 0 & 2 & 0
\end{array}\right]
$$

Incidence Matrices

Let $G=(V, E)$ be an undirected graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $M=\left[m_{i j}\right]$ where $m_{i j}=1$ if e_{j} is incident with v_{i}, and is 0 otherwise.

e_{1}
a
a
b
c
$c$$\left[\begin{array}{ccccccc}1 & e_{3} & 0 & e_{4} & e_{5} & e_{6} & e_{7}\end{array} e_{8}\right.$

Graph Isomorphism

The simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a one-to-one and onto function f from V_{1} to V_{2} with the property that a and b are adjacent in G_{1} if and only if $f(a)$ and $f(b)$ are adjacent in G_{2}, for all a and b in V_{1}. Such a function f is called an isomorphism. Two simple graphs that are not isomorphic are called nonisomorphic.

Graph Invariants

Properties preserved by isomorphism of graphs.

- must have the same number of vertices
- must have the same number of edges
- must have the same number of vertices with degree k
- for every proper subgraph g of one graph, there must be a proper subgraph of the other graph that is isomorphic of g

10.3 pg. 675 \# 1 \& \# 5

Use an adjacency list and adjacency matrix to represent the given graph.

Vertex	Adjacent vertices
a	b, c, d
b	a, d
c	a, d
d	a, b, c

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

10.3 pg. 675 \# 3 \& \# 7

Use an adjacency list and adjacency matrix to represent the given graph.

Initial Vertex	Terminal Vertex
a	a, b, c, d
b	d
c	a, b
d	b, c, d

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

10.3 pg. 675 \# 17

Draw an undirected graph represented by the given adjacency matrix.

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 0 & 3 & 0 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

10.3 pg. 676 \# 27

Use an incidence matrix to represent the graph.

e_{1}
e_{2}

a
b
b
$d$$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\
0 & e_{5} \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0\end{array}\right]$

10.3 pg. 667 \# 35

Determine whether the pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

This graph is isomorphic. One isomorphism is $f\left(u_{1}\right)=v_{1}, f\left(u_{2}\right)=v_{3}, f\left(u_{3}\right)=v_{5}, f\left(u_{4}\right)=v_{2}$, and $f\left(u_{5}\right)=v_{4}$.

10.3 pg. 667 \# 39

Determine whether the pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

This graph is isomorphic. One isomorphism is $f\left(u_{1}\right)=v_{5}, f\left(u_{2}\right)=v_{2}, f\left(u_{3}\right)=v_{3}, f\left(u_{4}\right)=$ $v_{6}, f\left(u_{5}\right)=v_{4}$, and $f\left(u_{6}\right)=v_{1}$.

10.3 pg. 667 \# 41

Determine whether the pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

These graphs are not isomorphic. Consider the two vertices of degree 3 (u_{3} and u_{6}) in the first graph. They are within the neighborhood of u_{5}. However, in the second graph, the two vertices of degree 3 are not within the neighborhood of a common vertex. Thus, they are not isomorphic.

