9.6 Partial Orderings

9.6 pg. 630 # 1

Which of these relations on $\{0, 1, 2, 3\}$ are partial orderings? Determine the properties of a partial ordering that the others lack.

- a) $\{(0,0),(1,1),(2,2),(3,3)\}$
- b) $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
- c) $\{(0,0),(1,1),(1,2),(2,2),(3,3)\}$
- d) $\{(0,0),(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
- e) $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,2),(3,3)\}$

9.6 pg. 630 # 3

Is (S, R) a poset if S is the set of all people in the world and $(a, b) \in R$, where a and b are people, if

- a) a is taller than b?
- b) a is not taller than b?
- c) a = b or a is an ancestor of b?
- d) a and b have a common friend?

9.6 pg. 630 # 5

Which of these are posets?

- a) $(\mathbf{Z}, =)$
- b) (\mathbf{Z}, \neq)
- c) (\mathbf{Z}, \geq)
- d) (**Z**,∤)

9.6 pg. 630 # 11

Determine whether the relation with the directed graph shown is a partial order.

9.6 pg. 630 # 19

Find the lexicographic ordering of the bit strings 0, 01, 11, 001, 010, 011, 0001, and 0101 based on the ordering 0 < 1.

9.6 pg. 631 # 23

Draw the Hasse diagram for divisibility on the set

- a) {1, 2, 3, 4, 5, 6, 7, 8}
- b) {1, 2, 3, 5, 7, 11, 13}
- c) $\{1, 2, 3, 6, 12, 24, 36, 48\}$

9.6 pg. 631 # 33

Answer these questions for the poset $(\{3, 5, 9, 15, 24, 45\}, |)$.

- a) Find the maximal elements.
- b) Find the minimal elements.
- c) Is there a greatest element?
- d) Is there a least element?
- e) Find all upper bounds of $\{3, 5\}$.
- f) Find the least upper bound of $\{3, 5\}$, if it exists.
- g) Find all lower bounds of $\{15, 45\}$.
- h) Find the greatest lower bound of $\{15, 45\}$, if it exists.

9.6 pg. 632 # 43

Determine whether the posets with these Hasse diagrams are lattices.

a)

9.6 pg. 633 # 67

Find an ordering of the tasks of a software project if the Hasse diagram for the tasks of the project is shown.

