
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Bitmasks

Boolean Bitwise Operations
 There are assembly bitwise instructions for all standard

boolean operations: AND, OR, XOR, and NOT
 Bits are computed individually
 Examples:

1 0 1 1 0 0
1 1 0 1 1 0
1 0 0 1 0 0

AND
=

1 1 0 0 0 1
0 1 1 0 1 1
1 1 1 0 1 1

OR
=

1 1 0 0 0 1
0 1 1 0 1 1
1 0 1 0 1 0

XOR
=

1 1 0 0 0 1
0 0 1 1 1 0

NOT
=

0
1
0

0
1
0

0 1
1 0
1 1

0 1
1 0

0 1
1 0
1 1

Boolean Bitwise Instructions

mov ax, 0C123h

and ax, 082F6h ; ax = C123 AND 82F6 = 8022

or ax, 0E34Fh ; ax = 8022 OR E34F = E36F

xor ax, 036E9h ; ax = E36F XOR 36E9 = D586

not ax ; ax = NOT D586 = 2A79

The test Instruction
 The test instruction performs an AND, but does not

store the result
 It only sets the FLAG bits

 Just like cmp does a subtraction but never stores its result
 Note that all boolean bitwise instructions do set the

FLAG bits, BUT for the not operation, which doesn’t
 Example:

mov al, 0FFh mov al, 0FFh
test al, 000h not al
jz foo ; branches jz foo ; does not branch

Uses of Bitwise operations
 Bitwise operations are useful to modify individual bits within data
 This is done via bit masks, i.e., constant (immediate) quantities

with carefully chosen bits
 Example:

 Say you want to “turn on” bit 3 of a 2-byte value (counting from the
right, with bit 0 being the least significant bit)

 An easy way to do this is to OR the value with 0000000000001000,
which is 8 in decimal

 Say the value is stored in ax
 You can simply execute the instruction:
 or ax, 8 ; turns on bit 3 in ax

 Easy to generalize
 To turn on bits: use OR (with appropriate 1’s in the bit mask)
 To turn off bits: use AND (with appropriate 0’s in the bit mask)
 To flip bits: use XOR (with appropriate 1’s in the bit mask)

Bit Mask Operations Examples

mov eax, 04F346BA2h
or ax, 0F000h ; turns on 4 leftmost bits of ax
 ; eax = 4F34FBA2
xor eax, 000400000h ; inverts bit 22 of EAX
 ; eax = 4F74FBA2
xor ax, 0FFFFh ; 1’s complement of ax
 ; eax = 4F74045D

Remainder of a Division by 2i

 To find the remainder of a division of an operand by
2i, just AND the operand by 2i-1

 Why does this work?

 c = lower i bitsb = upper s-i bits

a = s-bit quantity

0 0 0 0 0 0

b * 2i

Therefore, a = b * 2i + c, an c is the remainder!
The remainder is simply the lowest i bits!

Remainder of a Division by 2i

 Let’s compute the remainder of the integer
division of 123d by 25=32d (unsigned) by
doing an AND with 25-1

mov ax, 123
mov bx, 0001Fh
and bx, ax

 The remainder when dividing 123 by 32 is
11011b = 27d

0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

Turning on a specific bit
 Say you want to turn on a specific bit in some data,

but that you don’t know which one before you run
the program
 the index of the bit to turn on is contained in a register
 we need to build the bit mask “on the fly”

 Assuming that the index of the bit is initially in bl,
and that we wish to turn on a bit in eax

mov cl, bl ; must have the bit index in cl
mov ebx, 1 ; create a number 0...01
shl ebx, cl ; shift it left cl times
or eax, ebx ; turn on the desired bit using
 ; ebx as a mask!

Turning off a specific bit
 Turning a bit off requires one more instruction, to

generate a bit mask that looks like 1...101..1
 Assuming that the index of the bit is initially in bl,

and that we which to turn on a bit in eax

mov cl, bl ; must have the bit index in cl
mov ebx, 1 ; create a number 0...01
shl ebx, cl ; shift it left cl times
not ebx; ; take the complement!
and eax, ebx ; turn off the desired bit using
 ; ebx as a mask!

An odd xor
 One often sees the following instruction:
 xor eax, eax ; eax = 0
 This is a simple way to set eax to 0
 It is useful because its machine code is smaller than that of,

for instance, “mov eax, 0”
 Therefore on saves a few bits in the text segment and while

the program runs a few bits less will be needed to be loaded
from memory, saving perhaps a few cycles

 Lesson: On could do everything with operations that look like
those of high-level languages, but the good assembly
programmer (and the good compiler) will use bit operations to
save memory and/or time

 Let’s go through the example in Section 3.3, which is a good
example of bit operation “craziness”

Avoiding Conditional Branches
 Section 3.3 is all about a trick to avoid conditional branches
 Conditional branches greatly reduce the speed of processors

 Essentially, one key to making processors go fast is to allow
them to know what’s coming up next

 With conditional branches, the processor doesn’t know in
advance whether the branch will be taken or not

 In many cases, one cannot avoid using conditional branches
 It’s just in the nature of the computation
 For instance, for a loop

 But in some cases it’s possible
 Let’s just look at an example that illustrates some of the

coolness/craziness of bitwise operations

SETxx Instructions
 The x86 assembly provides a set of instructions that set the

value of a byte register (e.g., al) or of a byte memory location
to 0 or 1 based on a flag

 Set you want to set al to 0 if bx > cx or to 1 otherwise (all
signed)

 With the setg instruction you can save a conditional branch:
 ; without setg ; with setg
 mov al, 1 ; al = 1 cmp bx, cx
 cmp bx, cx ; compare setg al, 0
 jng next ; jump if bx <= cx
 mov al, 0 ; al = 0
 next:

 Similar instructions: setz, setng, sete, etc.

Example: max(a,b)

 Say we want to store into ecx the maximum of two
(signed) numbers, one stored in eax and the other one
in [num]

 Here is a simple code to do this
 cmp eax, [num]
 jge next ; conditional branch
 mov ecx, [num]
 jmp end
next:
 mov ecx, eax
end:
 Let’s rewrite this without a conditional branch!

 Conditional branches are bad for performance

Example: max(a,b)
 To avoid the conditional branch, one needs a SETxx instruction and

clever bit masks
 We use a helper register, ebx, which we set to all zeros
 xor ebx, ebx
 We compare the two numbers
 cmp eax, [num]
 We set the value of bl to 0 or 1 depending on the result of the

comparison
 setg bl

 If eax > [num], ebx = 1 = 0...01b
 If eax <= [num], ebx = 0 = 0...00b

 We negate ebx (i.e., take 1’s complement and add 1)
 neg ebx

 If eax > [num], ebx = FFFFFFFFh
 If eax <= [num], ebx = 0000000000h

Example: max(a,b)
 We now have:

 eax contains one number, [num] contains the other
 If eax > [num], ebx = FFFFFFFFh (we want to “return” eax)
 If eax <= [num], ebx = 0000000000h (we want to “return” [num])

 If eax is the maximum and we AND eax and ebx, we get eax,
otherwise we get zero

 If [num] is the maximum and we AND [num] and NOT(ebx), we get
[num], otherwise we get zero

 So if we compute ((eax AND ebx) OR ([num] AND NOT(ebx))) we
get the maximum!
 If eax is the maximum (ebx = FFFFFFFFh):

 ((eax AND ebx) OR ([num] AND NOT(ebx))) = eax OR 0...0 = eax
 If [num] is the maximum (ebx = 00000000h):

 ((eax AND ebx) OR ([num] AND NOT(ebx))) = 0...0 OR [num] = [num]
 Let’s just write the code to compute ((eax AND ebx) OR ([num] AND

NOT(ebx)))

Example: max(a,b)
 Computing ((eax AND ebx) OR ([num] AND NOT(ebx))):
 mov ecx, ebx ;
 and ecx, eax ; ecx = eax AND ebx
 not ebx ;
 and ebx, [num] ; ebx = [num] AND NOT(ebx)
 or ecx, ebx ; voila!
 Whole program:
 xor ebx, ebx ; ebx = 0
 cmp eax, [num] ; compare eax and [num]
 setg bl ; bl = 1 if eax > [num], 0 otherwise
 neg ebx ; take one’s complement + 1
 mov ecx, ebx ;
 and ecx, eax ; ecx = eax AND ebx
 not ebx ;
 and ebx, [num] ; ebx = [num] AND NOT(ebx)
 or ecx, ebx ; voila!

Bit Operations in C
 Although in this course we focus on assembler, let’s

discuss C a little bit
 C is well-known for allowing the programmer to write

code that is either high-level or that looks pretty
close to assembly
 Tries to allow “easy” programming as well as

“performance” programming
 One area in which C is most like assembly is in its

ability to operate on bits
 This is very useful, and since you probably won’t

see it too much in other courses, let’s go through it
 Especially because bit operations are used/needed by

several important system calls

Bitwise Operators in C
 Boolean Operations:

 AND: &&
 OR: ||
 XOR: XXX
 NOT: !

 Bitwise Operations:
 AND: &
 OR: |
 XOR: ^
 NOT: ~

 Shift Operations:
 Left Shift: <<
 Right Shift: >>
 Logical if operand is unsigned
 Arithmetic is operand is signed

Example Operations

short int s; // 2-byte signed
short unsigned int u; // 2-byte unsigned
s = -1; // s = 0xFFFF
u = 100; // u = 0x0064
u = u | 0x0100; // u = 0x0164
s = s & 0xFFF0; // s = 0xFFF0
s = s ^ u; // s = 0xFE94
u = u << 3; // u = 0x0B20
s = s >> 2; // s = 0xFFA5

Common Uses of Bit Operations

 C can use bit operations like assembly
 Typically for fast multiplications, divisions

 The most common use is for dealing with file
permissions

 The POSIX API, used to deal with files on all
Linux systems, uses bits to encode file
access permissions

 If you have to write a C code that needs to
read/modify file permissions, then you need
to use C’s bit operations

Using chmod from C
 In a POSIX system, there is a C library function called chmod() that

modifies permissions
 chmod() takes two arguments:

 The file name
 A 4-byte quantity that is interpreted as a bunch of individual bits, which

describe the permission
 To make life easy, the user does not have to construct the bits by hand,

but there are macros
 For instance: (p contains the file’s permission bits)
 chmod(“file”, p | S_IRUSR)
 Gives read permission to the owner of the file
 S_IRUSR has one of its bits turned on
 This makes it easy to do multiple things at once:
 chmod(“file”, p | S_IRUSR | S_IWUSR | S_IROTH)
 The user can read and write, all “other” users can read
 Simply use a bitwise or to apply all permission settings

Modifying Permissions
 Say you want to write a program that, given a file,

removes write access to others and adds read
access to the owner of the file

 First step: get the 4-byte permission data
 struct stat s; // data structure
 stat(“file”, &s); // get all file metadata
 unsigned int p; // 4-byte quantity
 p = s.st_mode; // p = permission bits
 Second step: modify, keeping most bits unchanged
 chmod(“file”, (p & ~S_IWOTH) | S_IRUSR);

Counting Bits
 Section 3.6 of the book shows many methods for counting bits
 These methods are shown in C, but of course it’s easy (if

perhaps cumbersome) to implement them in assembly
 Let’s look at Method #1

 Make sure you look at the others on your own and that you
understand them (some are quite creative)

unsigned char data; // 1 byte (book uses 4)
char count; // counter (only 1 byte necessary)
while (data) {
 data = data & (data -1);
 cnt++;
}
printf(“number of 1 bits: %d\n”,count);

Counting Bits
while (data) {
 data = data & (data -1);
 cnt++;
}

 Example: data = 01011010 (in binary)
 data = data & (data -1) = 01011010 & 01011001
 = 01011000
 data = data & (data -1) = 01011000 & 01010111
 = 01010000
 etc.

 At each step, we set the rightmost 1 bit to 0!
 When we have all zeros we stop
 The number of iterations is the number of 1 bits

