ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

" JEE
Boolean Bitwise Operations

® There are assembly bitwise instructions for all standard
boolean operations: AND, OR, XOR, and NOT

® Bits are computed individually
® Examples:

p L1[o[1[1]o]0]0]0] [1]0][1]
L[]0l 1] 1]0[1] 1] Lo[1]1]o[1]1[1]0]
EIEIEY

[1]o[o[1]o[o[o]0]

[A[1TofoJo[1] 0[]
XOR|0l1l1|o|1|1|1|o| NOT [4]1]ofo[o[1]0] 1]

= [Alo[lo[1[o[A]1] = [ofo[4[1T4T0o[o]

" JEE
Boolean Bitwise Instructions

mov ax, 0C123h

and ax, 082F6h ; ax = C123 AND 82F6 = 8022
or ax, 0E34Fh ; ax =8022 OR E34F = E36F
xor ax, 036E9h ; ax = E36F XOR 36E9 = D586

not ax ;ax = NOT D586 = 2A79

" JEE
The test Instruction

® The test instruction performs an AND, but does not
store the result

® |t only sets the FLAG bits
Just like cmp does a subtraction but never stores its result

B Note that all boolean bitwise instructions do set the
FLAG bits, BUT for the not operation, which doesn’t

® Example:

mov al, OFFh mov al, OFFh
test al, 000h not al
iz foo ; branches jz foo ; does not branch

" JEE
Uses of Bitwise operations

m Bitwise operations are useful to modify individual bits within data

® This is done via bit masks, i.e., constant (immediate) quantities
with carefully chosen bits

m Example:

Say you want to “turn on” bit 3 of a 2-byte value (counting from the
right, with bit 0 being the least significant bit)

An easy way to do this is to OR the value with 0000000000001000,
which is 8 in decimal

Say the value is stored in ax
You can simply execute the instruction:
or ax, 8 ;turnson bit 3 in ax
m Easy to generalize
To turn on bits: use OR (with appropriate 1’s in the bit mask)
To turn off bits: use AND (with appropriate O’s in the bit mask)
To flip bits: use XOR (with appropriate 1’s in the bit mask)

" JEE
Bit Mask Operations Examples

mov eax, 04F346BA2h
or ax, OFO00h ; turns on 4 leftmost bits of ax
; eax = 4F34FBA2

xor eax, 000400000h ; inverts bit 22 of EAX

; eax = 4F74FBA2

; 1’s complement of ax

; eax = 4F74045D

xor ax, OFFFFh

" JEE
Remainder of a Division by 2!

® To find the remainder of a division of an operand by
2, just AND the operand by 2'-1

® \Why does this work? a = s-bit quantity
A

lillllllllljl\lllllj\l

Y . . Y . .
b = upper s-i bits ¢ = lower i bits

LI T T T TTTTT1Tofofofo[o]0]
\)
Y
b*2i
Therefore, a=b * 2 + ¢, an c is the remainder!
The remainder is simply the lowest i bits!

" JEE
Remainder of a Division by 2!

m L et’'s compute the remainder of the integer
division of 123d by 2°=32d (unsigned) by
doing an AND with 25-1

mov ax, 123 [0]oJoJo[o[o]o[ofo[1[1[1[1]0]1[1
mov bx, 0001Fh [oroToToTololo[0Tolo o[1]
and bx, ax

|
1]

[o[o[o[o[o[o[o[o[o[o[o[1] 1]0]1]1]

® The remainder when dividing 123 by 32 is
11011b = 27d

" JEE
Turning on a specific bit

®m Say you want to turn on a specific bit in some data,
but that you don’t know which one before you run
the program

the index of the bit to turn on is contained in a register
we need to build the bit mask “on the fly”

® Assuming that the index of the bit is initially in bl,
and that we wish to turn on a bit in eax

mov cl, bl ; must have the bit index in cl
mov ebx, 1 ; create a number 0...01

shl ebx, cl ; shift it left cl times

or eax,ebx ;turnon the desired bit using

; ebx as a mask!

" JEE
Turning off a specific bit

® Turning a bit off requires one more instruction, to
generate a bit mask that looks like 1...101..1

® Assuming that the index of the bit is initially in bl,
and that we which to turn on a bit in eax

mov cl, bl ; must have the bit index in cl
mov ebx, 1 ; create a number 0...01

shl ebx, cl ; shift it left cl times

not ebx; ; take the complement!

and eax, ebx ;turn off the desired bit using

: ebx as a mask!

" JEE
An odd xor

® One often sees the following instruction:
xor eax, eax ;eax=0
® This is a simple way to set eaxto 0
® |t is useful because its machine code is smaller than that of,
for instance, “mov eax, 0”

®m Therefore on saves a few bits in the text segment and while
the program runs a few bits less will be needed to be loaded
from memory, saving perhaps a few cycles

m Lesson: On could do everything with operations that look like
those of high-level languages, but the good assembly
programmer (and the good compiler) will use bit operations to
save memory and/or time

m | et’'s go through the example in Section 3.3, which is a good
example of bit operation “craziness”

" JEE
Avoiding Conditional Branches

m Section 3.3 is all about a trick to avoid conditional branches
®m Conditional branches greatly reduce the speed of processors

Essentially, one key to making processors go fast is to allow
them to know what's coming up next

With conditional branches, the processor doesn’t know in
advance whether the branch will be taken or not

® |n many cases, one cannot avoid using conditional branches
It's just in the nature of the computation
For instance, for a loop

®m But in some cases it's possible

m | et’s just look at an example that illustrates some of the
coolness/craziness of bitwise operations

" JEE
SETxx Instructions

®m The x86 assembly provides a set of instructions that set the
value of a byte register (e.g., al) or of a byte memory location
to 0 or 1 based on a flag

m Set you want to set al to 0 if bx > cx or to 1 otherwise (all

signed)

m With the setg instruction you can save a conditional branch:
; without setg ; with setg
mov al,1 ;al=1 cmp bx, cx
cmp bx, cx ; compare setg al,0

jng next ;jumpif bx <=cx
mov al,0 ;al=0
next:

®m Similar instructions: setz, setng, sete, etc.

" JEE
Example: max(a,b)

m Say we want to store into ecx the maximum of two

(signed) numbers, one stored in eax and the other one
in [num]

® Here is a simple code to do this

next:

cmp eax, [num]

jge next ; conditional branch
mov ecx, [num]

jmpend

mov ecx, eax

end:
m Let’s rewrite this without a conditional branch!

Conditional branches are bad for performance

" JEE
Example: max(a,b)

®m To avoid the conditional branch, one needs a SETxx instruction and
clever bit masks

= We use a helper register, ebx, which we set to all zeros
xor ebx, ebx
®m We compare the two numbers
cmp eax, [num]
m We set the value of bl to 0 or 1 depending on the result of the
comparison
setg bl
If eax > [num], ebx=1=0..01b
If eax <= [num], ebx=0=0...00b
®m \We negate ebx (i.e., take 1’'s complement and add 1)
neg ebx
If eax > [num], ebx = FFFFFFFFh
If eax <= [num], ebx =0000000000h

" JEE
Example: max(a,b)

= We now have:

eax contains one number, [num] contains the other
If eax > [num], ebx = FFFFFFFFh (we want to “return” eax)
If eax <= [num], ebx = 0000000000h (we want to “return” [num])
If eax is the maximum and we AND eax and ebx, we get eax,
otherwise we get zero
If [num] is the maximum and we AND [num] and NOT(ebx), we get
[num], otherwise we get zero
So if we compute ((eax AND ebx) OR ([num] AND NOT(ebx))) we
get the maximum!
If eax is the maximum (ebx = FFFFFFFFh):
= ((eax AND ebx) OR ([num] AND NOT(ebx))) = eax OR 0...0 = eax
If [num] is the maximum (ebx = 00000000h):
= ((eax AND ebx) OR ([num] AND NOT(ebx))) = 0...0 OR [num] = [num]

Let’s just write the code to compute ((eax AND ebx) OR ([num] AND
NOT(ebx)))

" JEE
Example: max(a,b)

= Computing ((eax AND ebx) OR ([num] AND NOT(ebx))):

mov ecx, ebx
and ecx, eax ; ecx = eax AND ebx
not ebx ;
and ebx, [num] ; ebx = [num] AND NOT(ebx)
or ecx, ebx ; voila!
® Whole program:
xor ebx, ebx; ebx =0
cmp eax, [num] ; compare eax and [num]
setg bl ; bl = 1 if eax > [num], 0 otherwise
neg ebx ; take one’s complement + 1
mov ecx, ebx
and ecx, eax ; ecx = eax AND ebx
not ebx ;
and ebx, [num] ; ebx = [num] AND NOT(ebx)
or ecx, ebx ; voilal

Bit Operations in C

® Although in this course we focus on assembler, let’s
discuss C a little bit

m C is well-known for allowing the programmer to write
code that is either high-level or that looks pretty
close to assembly

Tries to allow “easy” programming as well as
“performance” programming

® One area in which C is most like assembly is in its
ability to operate on bits

® This is very useful, and since you probably won'’t
see it too much in other courses, let’'s go through it

Especially because bit operations are used/needed by
several important system calls

" JEE
Bitwise Operators in C

® Boolean Operations:
AND: &&
OR: ||
XOR: XXX
NOT: !
m Bitwise Operations:
AND: &
OR: |
XOR: #
NOT: ~
® Shift Operations:
Left Shift: <<
Right Shift: >>
Logical if operand is unsigned
Arithmetic is operand is signed

Example Operations

short int s; /] 2-byte signed
short unsigned int u; // 2-byte unsigned
s =-1; /Il s = OXFFFF
u=100; /l'u = 0x0064
u=u | 0x0100; /l'u=0x0164

s = s & OxFFFO; /l's = OXFFFO
s=s™u; Il's = OxFE94
Uu=u=<<g; /['u =0x0B20
S=8>>2; Il's = OXFFAS5

" JEE
Common Uses of Bit Operations

m C can use bit operations like assembly
Typically for fast multiplications, divisions

® The most common use is for dealing with file
permissions

®m The POSIX API, used to deal with files on all
Linux systems, uses bits to encode file
access permissions

m |[f you have to write a C code that needs to

read/modify file permissions, then you need
to use C’s bit operations

" JEE
Using chmod from C

m |n a POSIX system, there is a C library function called chmod() that
modifies permissions

m chmod() takes two arguments:
The file name

A 4-byte quantity that is interpreted as a bunch of individual bits, which
describe the permission

®m To make life easy, the user does not have to construct the bits by hand,
but there are macros

m Forinstance: (p contains the file’s permission bits)
chmod(“file”, p | S_IRUSR)
Gives read permission to the owner of the file
S _IRUSR has one of its bits turned on
m This makes it easy to do multiple things at once:
chmod(“file”, p | S_IRUSR | S_IWUSR | S_IROTH)
The user can read and write, all “other” users can read
= Simply use a bitwise or to apply all permission settings

" JEE
Modifying Permissions

®m Say you want to write a program that, given a file,
removes write access to others and adds read
access to the owner of the file

m First step: get the 4-byte permission data
struct stat s; /I data structure
stat(“file”, &s); /I get all file metadata
unsigned int p; // 4-byte quantity
p =s.st mode; // p = permission bits

®m Second step: modify, keeping most bits unchanged
chmod(“file”, (p & ~S_IWOTH) | S_IRUSR);

" JEE
Counting Bits

m Section 3.6 of the book shows many methods for counting bits

® These methods are shown in C, but of course it's easy (if
perhaps cumbersome) to implement them in assembly

m | et’s look at Method #1

Make sure you look at the others on your own and that you
understand them (some are quite creative)

unsigned char data; // 1 byte (book uses 4)
char count; // counter (only 1 byte necessary)
while (data) {

data = data & (data -1);

cnt++;
}
printf (“number of 1 bits: %d\n”,count);

" JEE
Counting Bits

while (data) {
data = data & (data -1);
cnt++;
}
®m Example: data = 01011010 (in binary)
data = data & (data -1) = 01011010 & 01011001
= 01011000
data = data & (data -1) = 01011000 & 01010111
=01010000
etc.
m At each step, we set the rightmost 1 bit to 0!
® \When we have all zeros we stop

® The number of iterations is the number of 1 bits

