
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Bitmasks

Boolean Bitwise Operations
 There are assembly bitwise instructions for all standard

boolean operations: AND, OR, XOR, and NOT
 Bits are computed individually
 Examples:

1 0 1 1 0 0
1 1 0 1 1 0
1 0 0 1 0 0

AND
=

1 1 0 0 0 1
0 1 1 0 1 1
1 1 1 0 1 1

OR
=

1 1 0 0 0 1
0 1 1 0 1 1
1 0 1 0 1 0

XOR
=

1 1 0 0 0 1
0 0 1 1 1 0

NOT
=

0
1
0

0
1
0

0 1
1 0
1 1

0 1
1 0

0 1
1 0
1 1

Boolean Bitwise Instructions

mov ax, 0C123h

and ax, 082F6h ; ax = C123 AND 82F6 = 8022

or ax, 0E34Fh ; ax = 8022 OR E34F = E36F

xor ax, 036E9h ; ax = E36F XOR 36E9 = D586

not ax ; ax = NOT D586 = 2A79

The test Instruction
 The test instruction performs an AND, but does not

store the result
 It only sets the FLAG bits

 Just like cmp does a subtraction but never stores its result
 Note that all boolean bitwise instructions do set the

FLAG bits, BUT for the not operation, which doesn’t
 Example:

mov al, 0FFh mov al, 0FFh
test al, 000h not al
jz foo ; branches jz foo ; does not branch

Uses of Bitwise operations
 Bitwise operations are useful to modify individual bits within data
 This is done via bit masks, i.e., constant (immediate) quantities

with carefully chosen bits
 Example:

 Say you want to “turn on” bit 3 of a 2-byte value (counting from the
right, with bit 0 being the least significant bit)

 An easy way to do this is to OR the value with 0000000000001000,
which is 8 in decimal

 Say the value is stored in ax
 You can simply execute the instruction:
 or ax, 8 ; turns on bit 3 in ax

 Easy to generalize
 To turn on bits: use OR (with appropriate 1’s in the bit mask)
 To turn off bits: use AND (with appropriate 0’s in the bit mask)
 To flip bits: use XOR (with appropriate 1’s in the bit mask)

Bit Mask Operations Examples

mov eax, 04F346BA2h
or ax, 0F000h ; turns on 4 leftmost bits of ax
 ; eax = 4F34FBA2
xor eax, 000400000h ; inverts bit 22 of EAX
 ; eax = 4F74FBA2
xor ax, 0FFFFh ; 1’s complement of ax
 ; eax = 4F74045D

Remainder of a Division by 2i

 To find the remainder of a division of an operand by
2i, just AND the operand by 2i-1

 Why does this work?

 c = lower i bitsb = upper s-i bits

a = s-bit quantity

0 0 0 0 0 0

b * 2i

Therefore, a = b * 2i + c, an c is the remainder!
The remainder is simply the lowest i bits!

Remainder of a Division by 2i

 Let’s compute the remainder of the integer
division of 123d by 25=32d (unsigned) by
doing an AND with 25-1

mov ax, 123
mov bx, 0001Fh
and bx, ax

 The remainder when dividing 123 by 32 is
11011b = 27d

0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

Turning on a specific bit
 Say you want to turn on a specific bit in some data,

but that you don’t know which one before you run
the program
 the index of the bit to turn on is contained in a register
 we need to build the bit mask “on the fly”

 Assuming that the index of the bit is initially in bl,
and that we wish to turn on a bit in eax

mov cl, bl ; must have the bit index in cl
mov ebx, 1 ; create a number 0...01
shl ebx, cl ; shift it left cl times
or eax, ebx ; turn on the desired bit using
 ; ebx as a mask!

Turning off a specific bit
 Turning a bit off requires one more instruction, to

generate a bit mask that looks like 1...101..1
 Assuming that the index of the bit is initially in bl,

and that we which to turn on a bit in eax

mov cl, bl ; must have the bit index in cl
mov ebx, 1 ; create a number 0...01
shl ebx, cl ; shift it left cl times
not ebx; ; take the complement!
and eax, ebx ; turn off the desired bit using
 ; ebx as a mask!

An odd xor
 One often sees the following instruction:
 xor eax, eax ; eax = 0
 This is a simple way to set eax to 0
 It is useful because its machine code is smaller than that of,

for instance, “mov eax, 0”
 Therefore on saves a few bits in the text segment and while

the program runs a few bits less will be needed to be loaded
from memory, saving perhaps a few cycles

 Lesson: On could do everything with operations that look like
those of high-level languages, but the good assembly
programmer (and the good compiler) will use bit operations to
save memory and/or time

 Let’s go through the example in Section 3.3, which is a good
example of bit operation “craziness”

Avoiding Conditional Branches
 Section 3.3 is all about a trick to avoid conditional branches
 Conditional branches greatly reduce the speed of processors

 Essentially, one key to making processors go fast is to allow
them to know what’s coming up next

 With conditional branches, the processor doesn’t know in
advance whether the branch will be taken or not

 In many cases, one cannot avoid using conditional branches
 It’s just in the nature of the computation
 For instance, for a loop

 But in some cases it’s possible
 Let’s just look at an example that illustrates some of the

coolness/craziness of bitwise operations

SETxx Instructions
 The x86 assembly provides a set of instructions that set the

value of a byte register (e.g., al) or of a byte memory location
to 0 or 1 based on a flag

 Set you want to set al to 0 if bx > cx or to 1 otherwise (all
signed)

 With the setg instruction you can save a conditional branch:
 ; without setg ; with setg
 mov al, 1 ; al = 1 cmp bx, cx
 cmp bx, cx ; compare setg al, 0
 jng next ; jump if bx <= cx
 mov al, 0 ; al = 0
 next:

 Similar instructions: setz, setng, sete, etc.

Example: max(a,b)

 Say we want to store into ecx the maximum of two
(signed) numbers, one stored in eax and the other one
in [num]

 Here is a simple code to do this
 cmp eax, [num]
 jge next ; conditional branch
 mov ecx, [num]
 jmp end
next:
 mov ecx, eax
end:
 Let’s rewrite this without a conditional branch!

 Conditional branches are bad for performance

Example: max(a,b)
 To avoid the conditional branch, one needs a SETxx instruction and

clever bit masks
 We use a helper register, ebx, which we set to all zeros
 xor ebx, ebx
 We compare the two numbers
 cmp eax, [num]
 We set the value of bl to 0 or 1 depending on the result of the

comparison
 setg bl

 If eax > [num], ebx = 1 = 0...01b
 If eax <= [num], ebx = 0 = 0...00b

 We negate ebx (i.e., take 1’s complement and add 1)
 neg ebx

 If eax > [num], ebx = FFFFFFFFh
 If eax <= [num], ebx = 0000000000h

Example: max(a,b)
 We now have:

 eax contains one number, [num] contains the other
 If eax > [num], ebx = FFFFFFFFh (we want to “return” eax)
 If eax <= [num], ebx = 0000000000h (we want to “return” [num])

 If eax is the maximum and we AND eax and ebx, we get eax,
otherwise we get zero

 If [num] is the maximum and we AND [num] and NOT(ebx), we get
[num], otherwise we get zero

 So if we compute ((eax AND ebx) OR ([num] AND NOT(ebx))) we
get the maximum!
 If eax is the maximum (ebx = FFFFFFFFh):

 ((eax AND ebx) OR ([num] AND NOT(ebx))) = eax OR 0...0 = eax
 If [num] is the maximum (ebx = 00000000h):

 ((eax AND ebx) OR ([num] AND NOT(ebx))) = 0...0 OR [num] = [num]
 Let’s just write the code to compute ((eax AND ebx) OR ([num] AND

NOT(ebx)))

Example: max(a,b)
 Computing ((eax AND ebx) OR ([num] AND NOT(ebx))):
 mov ecx, ebx ;
 and ecx, eax ; ecx = eax AND ebx
 not ebx ;
 and ebx, [num] ; ebx = [num] AND NOT(ebx)
 or ecx, ebx ; voila!
 Whole program:
 xor ebx, ebx ; ebx = 0
 cmp eax, [num] ; compare eax and [num]
 setg bl ; bl = 1 if eax > [num], 0 otherwise
 neg ebx ; take one’s complement + 1
 mov ecx, ebx ;
 and ecx, eax ; ecx = eax AND ebx
 not ebx ;
 and ebx, [num] ; ebx = [num] AND NOT(ebx)
 or ecx, ebx ; voila!

Bit Operations in C
 Although in this course we focus on assembler, let’s

discuss C a little bit
 C is well-known for allowing the programmer to write

code that is either high-level or that looks pretty
close to assembly
 Tries to allow “easy” programming as well as

“performance” programming
 One area in which C is most like assembly is in its

ability to operate on bits
 This is very useful, and since you probably won’t

see it too much in other courses, let’s go through it
 Especially because bit operations are used/needed by

several important system calls

Bitwise Operators in C
 Boolean Operations:

 AND: &&
 OR: ||
 XOR: XXX
 NOT: !

 Bitwise Operations:
 AND: &
 OR: |
 XOR: ^
 NOT: ~

 Shift Operations:
 Left Shift: <<
 Right Shift: >>
 Logical if operand is unsigned
 Arithmetic is operand is signed

Example Operations

short int s; // 2-byte signed
short unsigned int u; // 2-byte unsigned
s = -1; // s = 0xFFFF
u = 100; // u = 0x0064
u = u | 0x0100; // u = 0x0164
s = s & 0xFFF0; // s = 0xFFF0
s = s ^ u; // s = 0xFE94
u = u << 3; // u = 0x0B20
s = s >> 2; // s = 0xFFA5

Common Uses of Bit Operations

 C can use bit operations like assembly
 Typically for fast multiplications, divisions

 The most common use is for dealing with file
permissions

 The POSIX API, used to deal with files on all
Linux systems, uses bits to encode file
access permissions

 If you have to write a C code that needs to
read/modify file permissions, then you need
to use C’s bit operations

Using chmod from C
 In a POSIX system, there is a C library function called chmod() that

modifies permissions
 chmod() takes two arguments:

 The file name
 A 4-byte quantity that is interpreted as a bunch of individual bits, which

describe the permission
 To make life easy, the user does not have to construct the bits by hand,

but there are macros
 For instance: (p contains the file’s permission bits)
 chmod(“file”, p | S_IRUSR)
 Gives read permission to the owner of the file
 S_IRUSR has one of its bits turned on
 This makes it easy to do multiple things at once:
 chmod(“file”, p | S_IRUSR | S_IWUSR | S_IROTH)
 The user can read and write, all “other” users can read
 Simply use a bitwise or to apply all permission settings

Modifying Permissions
 Say you want to write a program that, given a file,

removes write access to others and adds read
access to the owner of the file

 First step: get the 4-byte permission data
 struct stat s; // data structure
 stat(“file”, &s); // get all file metadata
 unsigned int p; // 4-byte quantity
 p = s.st_mode; // p = permission bits
 Second step: modify, keeping most bits unchanged
 chmod(“file”, (p & ~S_IWOTH) | S_IRUSR);

Counting Bits
 Section 3.6 of the book shows many methods for counting bits
 These methods are shown in C, but of course it’s easy (if

perhaps cumbersome) to implement them in assembly
 Let’s look at Method #1

 Make sure you look at the others on your own and that you
understand them (some are quite creative)

unsigned char data; // 1 byte (book uses 4)
char count; // counter (only 1 byte necessary)
while (data) {
 data = data & (data -1);
 cnt++;
}
printf(“number of 1 bits: %d\n”,count);

Counting Bits
while (data) {
 data = data & (data -1);
 cnt++;
}

 Example: data = 01011010 (in binary)
 data = data & (data -1) = 01011010 & 01011001
 = 01011000
 data = data & (data -1) = 01011000 & 01010111
 = 01010000
 etc.

 At each step, we set the rightmost 1 bit to 0!
 When we have all zeros we stop
 The number of iterations is the number of 1 bits

