
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Lexical
Analysis

The Big Picture Again

Scanner

source
code

Parser Opt1 Opt2 Optn. . .

Instruction
Selection

Register
Allocation

Instruction
Scheduling

machine
code

COMPILER

Lexical Analysis
 Lexical Analysis, also called ‘scanning’ or ‘lexing’
 It does two things:

 Transforms the input source string into a sequence of substrings
 Classifies them according to their ‘role’

 The input is the source code
 The output is a list of tokens
 Example input:
 if (x == y)
 z = 12;
 else
 z = 7;
 This is really a single string:

i f (x = = y) \n \t z = 1 2 \n e l s e \n \t z = 7 ;; \n

Tokens
 A token is a syntactic category
 Example tokens:

 Identifier
 Integer
 Floating-point number
 Keyword
 etc.

 In English we would talk about
 Noun
 Verb
 Adjective
 etc.

Lexeme

 A lexeme is the string that represents an
instance of a token

 The set of all possible lexemes that can
represent a token instance is described by a
pattern

 For instance, we can decide that the pattern
for an identifier is
 A string of letters, numbers, or underscores, that

starts with a capital letter

Lexing output
i f (x = = y) \n \t z = 1 2 \n e l s e \n \t z = 7 ;; \n

<key, ‘if’> <openparen> <id, ‘x’> <op, ‘==’> <id, ‘y’>

<closeparen> <id, ‘z’> <op, ‘=’> <integer, ‘12’>

<key, ‘else’> <id, ‘z’> <op, ‘=’> <integer, ‘7’>

 Note that the lexer removes non-essential characters
 Spaces, tabs, linefeeds
 And comments!
 Typically a good idea for the lexer to allow arbitrary numbers of

white spaces, tabs, and linefeeds

<semic>

<semic>

The Lookahead Problem
 Characters are read in from left to right, one at a time, from the

input string
 The problem is that it is not always possible to determine whether

a token is finished or not without looking at the next character
 Example:

 Is character ‘f’ the full name of a variable, or the first letter of
keyword ‘for’?

 Is character ‘=‘ an assignment operator or the first character of the
‘==’ operator?

 In some languages, a lot of lookahead is needed
 Example: FORTRAN

 Fortran removes ALL white spaces before processing the input
string

 DO 5 I = 1.25 is valid code that sets variable DO5I to 1.25
 But ‘DO 5 I = 1.25’ could also be the beginning of a for loop!

The Lookahead Problem
 It is typically a good idea to design languages that require ‘little’

lookahead
 For each language, it should be possible to determine how many

lookahead characters are needed
 Example with 1-character lookahead:

 Say that I get an’if’ so far
 I can look at the next character
 If it’s a ‘ ‘, ‘(‘,’\t’, then I don’t read it; I stop here and emit a TOKEN_IF
 Otherwise I read the next character and will most likely emit a

TOKEN_ID
 In practice one implements lookhead/pushback

 When in need to look at next characters, read them in and push them
onto a data structure (stack/fifo)

 When in need of a character get it from the data structure, and if empty
from the file

A Lexer by Hand? You’re kidding!
 Example: Say we want to write the code to recognizes the keyword ‘if’
 c = readchar();
 if (c == ‘i’) {
 c = readchar();
 if (c == ‘f’) {
 c = readchar();
 if (c not alphanumeric) {
 pushback(c);
 emit(TOKEN_IF)
 } else {
 // build a TOKEN_ID
 }
 } else {
 // something else
 }
 } else {
 // something else
 }

A Lexer by Hand?
 There are many difficulties when writing a lexer by

hand as in the previous slide
 Many types of tokens

 fixed string
 special character sequences (operators)
 numbers defined by specific/complex rules

 Many possibilities of token overlaps
 Hence, many nested if-then-else in the lexer’s code

 Coding all this by hand is very painful
 And it’s difficult to get it right

 Nevertheless, some compilers have an
implemented-by-hand lexer for higher speed

Regular Expressions
 To avoid the endless nesting of if-then-else one needs a

formalization of the lexing process
 If we have a good formalization, we could even generate the lexer’s

code automatically!

Lexer
source code tokens

Lexer
Generator

compile time

specification

compiler design time

Lexer Specification
 Question: How do we formalize the job a lexer has to do to

recognize the tokens of a specific language?
 Answer: We need a language!

 More specifically, we’re going to talk about the language of tokens!
 What’s a language?

 An alphabet (typically called ∑)
 e.g., the ASCII characters

 A subset of all the possible strings over ∑
 We just need to provide a formal definition of a the language of the

tokens over ∑
 Which strings are tokens
 Which strings are not tokens

 It turns out that for all (reasonable) programming languages, the
tokens can be described by a regular language
 i.e., a language that can be recognized by a finite automaton
 A lot of theory here that I’m not going to get into

Describing Tokens
 Most popular way to describe tokens: regular expressions
 Regular expressions are just notations, which happen to be

able to represent regular languages
 A regular expression is a string (in a meta-language) that

describes a pattern (in the token language)
 L(A) is the language represented by regular expression A

 Remember that a language is just a set of valid strings
 Basic: L(‘c’) = {‘c’}
 Concatenation: L(AB) = {ab | a in L(A) and b in L(B)}

 L(‘i’ ‘f’) = {‘if’}
 L((‘i’)(‘f’)) = {‘if’}

 Union: L(A|B) = {x | x in L(A) or x in L(B)}
 L(‘if’|‘then’|‘else’} = {‘if’, ‘then’, ‘else’}
 L((‘0’|’1’) (‘1’|’0’)} = {’00’, ’01’, ’10’, ’11’}

Regular Expression Overview
Expression

ε

a
ab
a|b
a*

a+

a?
.

Meaning
empty pattern
Any pattern represented by ‘a’
Strings with pattern ‘a’ followed by pattern ‘b’
Strings with pattern ‘a’ or pattern ‘b’
Zero or more occurrences of pattern ‘a’
One or more occurrences of pattern ‘a’
(a | ε)
Any single character (not very standard)

 Let’s look at how REs are used to describe tokens

REs for Keywords
 It is easy to define a RE that describes all keywords

 Key = ‘if’ | ‘else’ | ‘for’ | ‘while’ | ‘int’ | ..

 These can be split in groups if needed

 Keyword = ‘if’ | ‘else’ | ‘for’ | …
 Type = ‘int’ | ‘double’ | ‘long’ | …

 The choice depends on what the next component
(i.e., the parser) would like to see

RE for Numbers
 Straightforward representation for integers

 digits = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
 integer = digits+

 RE systems allow the use of ‘-’ for ranges, sometimes with ‘[‘ and ‘]’
 digits = [0-9]+

 Floating point numbers are much more complicated
 2.00, .12e-12, 312.00001E+12, 4, 3.141e-12

 Here is one attempt
 (’+’|’-’|ε)(digit+ ‘.’? | digits* (’.’ digit+)) ((’E’|’e’)(’+’|’-’|ε) digit+)))?

 Note the difference between meta-character and language-
characters
 ‘+’ versus +, ‘-’ versus -, ‘(’ versus (, etc.

 Often books/documentations use different fonts for each level of
language

RE for Identifiers

 Here is a typical description
 letter = a-z | A-Z
 ident = letter (letter | digit | ‘_’)*

 Starts with a letter
 Has any number of letter or digit or ‘_’ afterwards

 In C: ident = (letter | ‘_’) (letter | digit | ‘_’)*

RE for Phone Numbers

 Simple RE
 digit = 0-9
 area = digit digit digit
 exchange = digit digit digit
 local = digit digit digit digit
 phonenumber = ‘(’ area ‘)’ ‘ ‘? exchange (’-’|’ ‘)

local

 The above describes the 103+3+4 strings of
the L(phonenumber) language

REs in Practice
 The Linux grep utility allows the use of REs

 Example with phone numbers
 grep ‘([0-9]\{3\}) \{0,1\}[0-9]\{3\}[-|][0-9]\{4\}’ file

 The syntax is different from that we’ve seen, but equivalent
 Sadly, there is no single standard for RE syntax

 Perl implements regular expressions
 (Good) text editors implement regular expressions

 .e.g., for string replacements
 At the end of the day, we often have built for

ourselves tons of regular expressions
 Many programs you use everyday use REs internally,

including compilers

Now What?
 Now we have a nice way to formalize each token

(which is a set of possible strings)
 Each token is described by a RE

 And hopefully we have made sure that our REs are correct
 Easier than writing the lexer from scratch
 But still requires that one be careful

 Question: How do we use these REs to parse the
input source code and generate the token stream?

 A little bit of ‘theory’
 REs characterize Regular Languages
 Regular Languages are recognized by Finite Automata
 Therefore we can implement REs as automata

Finite Automata
 A finite automaton is defined by

 An input alphabet: ∑
 A set of states: S
 A start state: n
 A set of accepting states: F (a subset of S)
 A set of transitions between states: subset of SxS

 Transition Example
 s1: a → s2
 If the automaton is in state s1, reading a character ‘a’ in

the input takes the automaton in state s2
 Whenever reaching the ‘end of the input,’ if the state the

automaton is in in a accept state, then we accept the input
 Otherwise we reject the input

Finite Automata as Graphs

s

n

s

s1 s2
a

 A state

 The start state

 An accepting state

 A transition

Automaton Examples

 This automaton accepts input ‘if’

s2n s1
i

f

Automaton Examples

 This automaton accepts strings that start with a 0, then have any
number of 1’s, and end with a 0

 Note the natural correspondence between automata and REs: 01*0
 Question: can we represent all REs with simple automata?
 Answer: yes
 Therefore, if we write a piece of code that implements arbitrary

automata, we have a piece of code that implements arbitrary REs,
and we have a lexer!
 Not _this_ simple, but close

s2n s1
0

1

0

Non-deterministic Automata
 The automata we have seen so far are called

Deterministic Finite Automata (DFA)
 At each state, there is at most one edge for a given

symbol
 At each state, transition can happen only if an input

symbol is read
 Or the string is rejected

 It turns out that it’s easier to translate REs to
Non-deterministic Finite Automata (NFA)
 There can be ‘ε-transitions’!

 Taken arbitrarily without consuming an input character
 There can be multiple possible transitions for a given

input symbol at a state
 The automaton can take them all simultaneously (see later)

Example REs and DFA
 Say we want to represent RE ‘a*b*c*d*e’ with aDFA

s4

n s1

ba b

s2

cc
c

s3

d d
d

d

e

e

e

e

Example REs and NFA
 ‘a*b*c*d*e’: much simpler with a NFA

s4
n s1

ε

a b

s2

c
ε

s3

d

e

 With ε-transitions, the automaton can ‘choose’ to
skip ahead, non-deterministically

ε

Example REs and NFA

 ‘a+b+c+d+e’: easy modification

s5
n s1

b

a b

s2

c
c

s3

d

e

 But now we have multiple choices for a given
character at each state!
 e.g., two ‘a’ arrows leaving n

a d
s4

NFA Acceptance
 When using an NFA, one must constantly keep track of all

possible states
 If at the end of the input (at least) one of these states is an

accepting state, then accept, otherwise reject

s2n s1
0

0

1

ε

input string: 010

NFA Acceptance
 When using an NFA, one must constantly keep track of all

possible states
 If at the end of the input (at least) one of these states is an

accepting state, then accept, otherwise reject

s2n s1
0

0

1

ε

input string: 010

NFA Acceptance
 When using an NFA, one must constantly keep track of all

possible states
 If at the end of the input (at least) one of these states is an

accepting state, then accept, otherwise reject

s2n s1
0

0

1

ε

input string: 010 ACCEPT because of s2

REs and NFA
 So now we’re left with two possibilities
 Possibility #1: design DFAs

 Easy to follow transitions once implemented
 But really cumbersome

 Possibility #2: design NFAs
 Really trivial to implement REs as NFAs
 But what happens on input characters?

 Non-deterministic transitions
 Should keep track of all possible states at a given point in the input!

 It turns out that:
 NFAs are not more powerful than DFAs
 There are systematic algorithms to convert NFAs into DFAs

and to limit their sizes
 There are simple techniques to implement DFAs in software

quickly

Implementing a Lexer
 Implementing a Lexer is now straightforward

 Come up with a RE for each token category
 Come up with an NFA for each RE
 Convert the NFA (automatically) to a DFA
 Write a piece of code that implements a DFA

 Pretty easy with a decent data-structure, which is a basically a
transition table

 Implement your lexer as a ‘bunch of DFAs’
 No nested if-then-else ad infinitum :)

 The above has been understood for decades and we
now have automatic lexer generators!

 Well-known examples are lex and flex
 Let’s look at ANTLR

ANTLR
 ANTLR: A tool to generate lexer/parsers
 Let’s look on the course Web site for how to download/

install/run ANTLR...
 Say we want to define a language with the following:

 Reserved keywords: int, if, endif, while, endwhile, print
 An addition operator: ‘+’
 An assignment operator: ‘=’
 An equal operator: ‘==’
 A not-equal operator: ‘!=’
 Integers
 Variable names as strings of lower-case letters
 Semicolons for terminating statements
 Left and right parentheses
 The ability to ignore white spaces, tabs, carriage returns, etc.

ANTLR
 Basics of Regular Expressions in ANTLR:

 Regular expression name (chosen by you)
 Colon
 Regular expression
 Semicolon

 Example:
 DIGIT : [0-9] ;
 VARIABLE: [a-z]+ ;
 EQUAL: ‘==’ ;

 Let’s look at the full example on the Web site, and
run it...
 Not that this example has some “parser stuff” at the

beginning, but we’re ignoring that for now

Conclusion

 20,000 ft view
 Lexing relies on Regular Expressions, which rely

on NFAs, which rely on DFAs, which are easy to
implement

 Therefore lexing is ‘easy’
 Lexing has been well-understood for decades

and lexer generators are known
 We’ve seen and will use ANTLR

 The only motivation to write a lexer by hand:
speed

