
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Lexical
Analysis

The Big Picture Again

Scanner

source
code

Parser Opt1 Opt2 Optn. . .

Instruction
Selection

Register
Allocation

Instruction
Scheduling

machine
code

COMPILER

Lexical Analysis
 Lexical Analysis, also called ‘scanning’ or ‘lexing’
 It does two things:

 Transforms the input source string into a sequence of substrings
 Classifies them according to their ‘role’

 The input is the source code
 The output is a list of tokens
 Example input:
 if (x == y)
 z = 12;
 else
 z = 7;
 This is really a single string:

i f (x = = y) \n \t z = 1 2 \n e l s e \n \t z = 7 ;; \n

Tokens
 A token is a syntactic category
 Example tokens:

 Identifier
 Integer
 Floating-point number
 Keyword
 etc.

 In English we would talk about
 Noun
 Verb
 Adjective
 etc.

Lexeme

 A lexeme is the string that represents an
instance of a token

 The set of all possible lexemes that can
represent a token instance is described by a
pattern

 For instance, we can decide that the pattern
for an identifier is
 A string of letters, numbers, or underscores, that

starts with a capital letter

Lexing output
i f (x = = y) \n \t z = 1 2 \n e l s e \n \t z = 7 ;; \n

<key, ‘if’> <openparen> <id, ‘x’> <op, ‘==’> <id, ‘y’>

<closeparen> <id, ‘z’> <op, ‘=’> <integer, ‘12’>

<key, ‘else’> <id, ‘z’> <op, ‘=’> <integer, ‘7’>

 Note that the lexer removes non-essential characters
 Spaces, tabs, linefeeds
 And comments!
 Typically a good idea for the lexer to allow arbitrary numbers of

white spaces, tabs, and linefeeds

<semic>

<semic>

The Lookahead Problem
 Characters are read in from left to right, one at a time, from the

input string
 The problem is that it is not always possible to determine whether

a token is finished or not without looking at the next character
 Example:

 Is character ‘f’ the full name of a variable, or the first letter of
keyword ‘for’?

 Is character ‘=‘ an assignment operator or the first character of the
‘==’ operator?

 In some languages, a lot of lookahead is needed
 Example: FORTRAN

 Fortran removes ALL white spaces before processing the input
string

 DO 5 I = 1.25 is valid code that sets variable DO5I to 1.25
 But ‘DO 5 I = 1.25’ could also be the beginning of a for loop!

The Lookahead Problem
 It is typically a good idea to design languages that require ‘little’

lookahead
 For each language, it should be possible to determine how many

lookahead characters are needed
 Example with 1-character lookahead:

 Say that I get an’if’ so far
 I can look at the next character
 If it’s a ‘ ‘, ‘(‘,’\t’, then I don’t read it; I stop here and emit a TOKEN_IF
 Otherwise I read the next character and will most likely emit a

TOKEN_ID
 In practice one implements lookhead/pushback

 When in need to look at next characters, read them in and push them
onto a data structure (stack/fifo)

 When in need of a character get it from the data structure, and if empty
from the file

A Lexer by Hand? You’re kidding!
 Example: Say we want to write the code to recognizes the keyword ‘if’
 c = readchar();
 if (c == ‘i’) {
 c = readchar();
 if (c == ‘f’) {
 c = readchar();
 if (c not alphanumeric) {
 pushback(c);
 emit(TOKEN_IF)
 } else {
 // build a TOKEN_ID
 }
 } else {
 // something else
 }
 } else {
 // something else
 }

A Lexer by Hand?
 There are many difficulties when writing a lexer by

hand as in the previous slide
 Many types of tokens

 fixed string
 special character sequences (operators)
 numbers defined by specific/complex rules

 Many possibilities of token overlaps
 Hence, many nested if-then-else in the lexer’s code

 Coding all this by hand is very painful
 And it’s difficult to get it right

 Nevertheless, some compilers have an
implemented-by-hand lexer for higher speed

Regular Expressions
 To avoid the endless nesting of if-then-else one needs a

formalization of the lexing process
 If we have a good formalization, we could even generate the lexer’s

code automatically!

Lexer
source code tokens

Lexer
Generator

compile time

specification

compiler design time

Lexer Specification
 Question: How do we formalize the job a lexer has to do to

recognize the tokens of a specific language?
 Answer: We need a language!

 More specifically, we’re going to talk about the language of tokens!
 What’s a language?

 An alphabet (typically called ∑)
 e.g., the ASCII characters

 A subset of all the possible strings over ∑
 We just need to provide a formal definition of a the language of the

tokens over ∑
 Which strings are tokens
 Which strings are not tokens

 It turns out that for all (reasonable) programming languages, the
tokens can be described by a regular language
 i.e., a language that can be recognized by a finite automaton
 A lot of theory here that I’m not going to get into

Describing Tokens
 Most popular way to describe tokens: regular expressions
 Regular expressions are just notations, which happen to be

able to represent regular languages
 A regular expression is a string (in a meta-language) that

describes a pattern (in the token language)
 L(A) is the language represented by regular expression A

 Remember that a language is just a set of valid strings
 Basic: L(‘c’) = {‘c’}
 Concatenation: L(AB) = {ab | a in L(A) and b in L(B)}

 L(‘i’ ‘f’) = {‘if’}
 L((‘i’)(‘f’)) = {‘if’}

 Union: L(A|B) = {x | x in L(A) or x in L(B)}
 L(‘if’|‘then’|‘else’} = {‘if’, ‘then’, ‘else’}
 L((‘0’|’1’) (‘1’|’0’)} = {’00’, ’01’, ’10’, ’11’}

Regular Expression Overview
Expression

ε

a
ab
a|b
a*

a+

a?
.

Meaning
empty pattern
Any pattern represented by ‘a’
Strings with pattern ‘a’ followed by pattern ‘b’
Strings with pattern ‘a’ or pattern ‘b’
Zero or more occurrences of pattern ‘a’
One or more occurrences of pattern ‘a’
(a | ε)
Any single character (not very standard)

 Let’s look at how REs are used to describe tokens

REs for Keywords
 It is easy to define a RE that describes all keywords

 Key = ‘if’ | ‘else’ | ‘for’ | ‘while’ | ‘int’ | ..

 These can be split in groups if needed

 Keyword = ‘if’ | ‘else’ | ‘for’ | …
 Type = ‘int’ | ‘double’ | ‘long’ | …

 The choice depends on what the next component
(i.e., the parser) would like to see

RE for Numbers
 Straightforward representation for integers

 digits = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
 integer = digits+

 RE systems allow the use of ‘-’ for ranges, sometimes with ‘[‘ and ‘]’
 digits = [0-9]+

 Floating point numbers are much more complicated
 2.00, .12e-12, 312.00001E+12, 4, 3.141e-12

 Here is one attempt
 (’+’|’-’|ε)(digit+ ‘.’? | digits* (’.’ digit+)) ((’E’|’e’)(’+’|’-’|ε) digit+)))?

 Note the difference between meta-character and language-
characters
 ‘+’ versus +, ‘-’ versus -, ‘(’ versus (, etc.

 Often books/documentations use different fonts for each level of
language

RE for Identifiers

 Here is a typical description
 letter = a-z | A-Z
 ident = letter (letter | digit | ‘_’)*

 Starts with a letter
 Has any number of letter or digit or ‘_’ afterwards

 In C: ident = (letter | ‘_’) (letter | digit | ‘_’)*

RE for Phone Numbers

 Simple RE
 digit = 0-9
 area = digit digit digit
 exchange = digit digit digit
 local = digit digit digit digit
 phonenumber = ‘(’ area ‘)’ ‘ ‘? exchange (’-’|’ ‘)

local

 The above describes the 103+3+4 strings of
the L(phonenumber) language

REs in Practice
 The Linux grep utility allows the use of REs

 Example with phone numbers
 grep ‘([0-9]\{3\}) \{0,1\}[0-9]\{3\}[-|][0-9]\{4\}’ file

 The syntax is different from that we’ve seen, but equivalent
 Sadly, there is no single standard for RE syntax

 Perl implements regular expressions
 (Good) text editors implement regular expressions

 .e.g., for string replacements
 At the end of the day, we often have built for

ourselves tons of regular expressions
 Many programs you use everyday use REs internally,

including compilers

Now What?
 Now we have a nice way to formalize each token

(which is a set of possible strings)
 Each token is described by a RE

 And hopefully we have made sure that our REs are correct
 Easier than writing the lexer from scratch
 But still requires that one be careful

 Question: How do we use these REs to parse the
input source code and generate the token stream?

 A little bit of ‘theory’
 REs characterize Regular Languages
 Regular Languages are recognized by Finite Automata
 Therefore we can implement REs as automata

Finite Automata
 A finite automaton is defined by

 An input alphabet: ∑
 A set of states: S
 A start state: n
 A set of accepting states: F (a subset of S)
 A set of transitions between states: subset of SxS

 Transition Example
 s1: a → s2
 If the automaton is in state s1, reading a character ‘a’ in

the input takes the automaton in state s2
 Whenever reaching the ‘end of the input,’ if the state the

automaton is in in a accept state, then we accept the input
 Otherwise we reject the input

Finite Automata as Graphs

s

n

s

s1 s2
a

 A state

 The start state

 An accepting state

 A transition

Automaton Examples

 This automaton accepts input ‘if’

s2n s1
i

f

Automaton Examples

 This automaton accepts strings that start with a 0, then have any
number of 1’s, and end with a 0

 Note the natural correspondence between automata and REs: 01*0
 Question: can we represent all REs with simple automata?
 Answer: yes
 Therefore, if we write a piece of code that implements arbitrary

automata, we have a piece of code that implements arbitrary REs,
and we have a lexer!
 Not _this_ simple, but close

s2n s1
0

1

0

Non-deterministic Automata
 The automata we have seen so far are called

Deterministic Finite Automata (DFA)
 At each state, there is at most one edge for a given

symbol
 At each state, transition can happen only if an input

symbol is read
 Or the string is rejected

 It turns out that it’s easier to translate REs to
Non-deterministic Finite Automata (NFA)
 There can be ‘ε-transitions’!

 Taken arbitrarily without consuming an input character
 There can be multiple possible transitions for a given

input symbol at a state
 The automaton can take them all simultaneously (see later)

Example REs and DFA
 Say we want to represent RE ‘a*b*c*d*e’ with aDFA

s4

n s1

ba b

s2

cc
c

s3

d d
d

d

e

e

e

e

Example REs and NFA
 ‘a*b*c*d*e’: much simpler with a NFA

s4
n s1

ε

a b

s2

c
ε

s3

d

e

 With ε-transitions, the automaton can ‘choose’ to
skip ahead, non-deterministically

ε

Example REs and NFA

 ‘a+b+c+d+e’: easy modification

s5
n s1

b

a b

s2

c
c

s3

d

e

 But now we have multiple choices for a given
character at each state!
 e.g., two ‘a’ arrows leaving n

a d
s4

NFA Acceptance
 When using an NFA, one must constantly keep track of all

possible states
 If at the end of the input (at least) one of these states is an

accepting state, then accept, otherwise reject

s2n s1
0

0

1

ε

input string: 010

NFA Acceptance
 When using an NFA, one must constantly keep track of all

possible states
 If at the end of the input (at least) one of these states is an

accepting state, then accept, otherwise reject

s2n s1
0

0

1

ε

input string: 010

NFA Acceptance
 When using an NFA, one must constantly keep track of all

possible states
 If at the end of the input (at least) one of these states is an

accepting state, then accept, otherwise reject

s2n s1
0

0

1

ε

input string: 010 ACCEPT because of s2

REs and NFA
 So now we’re left with two possibilities
 Possibility #1: design DFAs

 Easy to follow transitions once implemented
 But really cumbersome

 Possibility #2: design NFAs
 Really trivial to implement REs as NFAs
 But what happens on input characters?

 Non-deterministic transitions
 Should keep track of all possible states at a given point in the input!

 It turns out that:
 NFAs are not more powerful than DFAs
 There are systematic algorithms to convert NFAs into DFAs

and to limit their sizes
 There are simple techniques to implement DFAs in software

quickly

Implementing a Lexer
 Implementing a Lexer is now straightforward

 Come up with a RE for each token category
 Come up with an NFA for each RE
 Convert the NFA (automatically) to a DFA
 Write a piece of code that implements a DFA

 Pretty easy with a decent data-structure, which is a basically a
transition table

 Implement your lexer as a ‘bunch of DFAs’
 No nested if-then-else ad infinitum :)

 The above has been understood for decades and we
now have automatic lexer generators!

 Well-known examples are lex and flex
 Let’s look at ANTLR

ANTLR
 ANTLR: A tool to generate lexer/parsers
 Let’s look on the course Web site for how to download/

install/run ANTLR...
 Say we want to define a language with the following:

 Reserved keywords: int, if, endif, while, endwhile, print
 An addition operator: ‘+’
 An assignment operator: ‘=’
 An equal operator: ‘==’
 A not-equal operator: ‘!=’
 Integers
 Variable names as strings of lower-case letters
 Semicolons for terminating statements
 Left and right parentheses
 The ability to ignore white spaces, tabs, carriage returns, etc.

ANTLR
 Basics of Regular Expressions in ANTLR:

 Regular expression name (chosen by you)
 Colon
 Regular expression
 Semicolon

 Example:
 DIGIT : [0-9] ;
 VARIABLE: [a-z]+ ;
 EQUAL: ‘==’ ;

 Let’s look at the full example on the Web site, and
run it...
 Not that this example has some “parser stuff” at the

beginning, but we’re ignoring that for now

Conclusion

 20,000 ft view
 Lexing relies on Regular Expressions, which rely

on NFAs, which rely on DFAs, which are easy to
implement

 Therefore lexing is ‘easy’
 Lexing has been well-understood for decades

and lexer generators are known
 We’ve seen and will use ANTLR

 The only motivation to write a lexer by hand:
speed

