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Syntactic Analysis
 Lexical Analysis was about ensuring that we extract 

a set of valid words (i.e., tokens/lexemes) from the 
source code

 But nothing says that the words make a coherent 
sentence (i.e., program)

 Example:
 “if while i == == == 12 + endif abcd”
 Lexer will produce a stream of tokens: <TOKEN_IF> 

<TOKEN_WHILE> <TOKEN_NAME, “i”> <TOKEN_EQUAL> 
<TOKEN_EQUAL> <TOKEN_EQUAL> <TOKEN_INTEGER,”12”> 
<TOKEN_PLUS, “+”> <TOKEN_ENDIF> <TOKEN_NAME, “abcd”>

 This program is lexically correct, but syntactically incorrect

Grammar

 Question: How do we determine that a 
sentence is syntactically correct?

 Answer: We check against a grammar!
 A grammar consists of rules that determine 

which sentences are correct
 Example in English:

 A sentence must have a verb
 Example in C:

 A “{“ must have a matching “}”



Grammar
 Regular expressions are one way we have seen for 

specifying a set of rules
 Unfortunately they are not powerful enough for 

describing the syntax of programming languages
 Example:

 If we have 10 ‘{‘ then me must have 10 ‘}’
 We can’t implement this with regular expressions because 

they do not have memory!
 no way of counting and remembering counts

 Therefore we need a more powerful tool
 This tool is called Context-Free Grammars

 And some additional mechanisms

Context-Free Grammars
 A context-free grammar (CFG) consists of a set of 

production rules
 Each rule describes how a non-terminal symbol can 

be “replaced” or “expanded” by a string that consists 
of non-terminal symbols and terminal symbols
 Terminal symbols are really tokens
 Rules are written with syntax like regular expressions

 Rules can then be applied recursively
 Eventually one reaches a string of only terminal 

symbols, or so one hopes
 This string is syntactically correct according to the 

grammatical rules!
 Let’s see a simple example

CFG Example
 Set of non-terminals: A, B, C        (uppercase initial)
 Start non-terminal: S        (uppercase initial)
 Set of terminal symbols: a, b, c, d
 Set of production rules:

 S ➔ A | BC
 A ➔ Aa | a
 B ➔ bBCb | b
 C ➔ dCcd | c

 We can now start producing syntactically valid strings 
by doing derivations

 Example derivations:
S ➔ BC ➔ bBCbC ➔ bbCbC ➔ bbdCcdbC ➔ bbdccdbC ➔ 

bbdccdbc
S ➔ A ➔ Aa ➔ Aaa ➔ Aaaa ➔ aaaa

A Grammar for Expressions
Expr   ➔ Expr  Op  Expr
Expr   ➔ Number | Identifier
Identifier  ➔ Letter | Letter Identifier
Letter   ➔ a-z
Op  ➔  “+” | “-” | “*” | “/”
Number ➔ Digit Number | Digit
Digit   ➔ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Expr ➔ Expr Op Expr ➔ Number Op Expr ➔ 
   Digit Number Op Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔
   34 * Expr ➔ 34 * Identifier ➔ 34 * Letter Identifier ➔ 
   34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax



What is Parsing?
 What we just saw is the process of, starting with the start 

symbol and, through a sequence of rule derivations, obtain a 
string of terminal symbols
 We could generate all correct programs (infinite set though)

 Parsing: the other way around
 Give a string of non-terminals, the process of discovering a 

sequence of rule derivations that produce this particular string
 When we say we can’t parse a string, we mean that we can’t 

find any legal way in which the string can be obtained from the 
start symbol through derivations

 What we want to build is a parser: a program that takes in a 
string of tokens (terminal symbols) and discovers a derivation 
sequence, thus validating that the input is a syntactically 
correct program

Derivations as Trees
 A convenient and natural way to represent a sequence of 

derivations is a syntactic tree or parse tree
 Example: Expr ➔ Expr Op Expr ➔ Number Op Expr ➔ Digit Number Op 

Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔ 34 * Expr ➔ 34 * Identifier ➔ 
34 * Letter Identifier ➔ 34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax
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Derivations as Trees
 In the parser, derivations are implemented as trees
 Often, we draw trees without the full derivations
 Example:
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Ambiguity

 We call a grammar ambiguous if a string of 
terminal symbols can be reached by two 
different derivation sequences

 In other terms, a string can have more than 
one parse tree

 It turns out that our expression grammar is 
ambiguous!

 Let’s show that string 3*5+8 has two parse 
trees



Ambiguity
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Problems with Ambiguity
 Problem: syntax impacts meaning
 For our example string, we’d like to see the left tree because we 

most likely want * to have a higher precedence than +
 We don’t like ambiguity because it makes the parsers difficult to 

design because we don’t know which parse tree will be discovered 
when there are multiple possibilities

 So we often want to disambiguate grammars
 It turns out that it is possible to modify grammars to make them non-

ambiguous
 by adding non-terminals
 by adding/rewriting production rules

 In the case of our expression grammar, we can rewrite the grammar 
to remove ambiguity and to ensure that parse trees match our 
notion of operator precedence
 We get two benefits for the price of one
 Would work for many operators and many precedence relations

Non-Ambiguous Grammar
Expr  ➔  Term | Expr + Term | Expr - Term
Term  ➔  Term * Factor 
        | Term / Factor 
                   | Factor 

Factor  ➔  Number | Identifier

Example: 4*5+3-8*9
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Another Example Grammar

ForStatement ➔  for “(“ StmtCommaList “;” 
ExprCommaList “;” StmtCommaList ”)” “{“ 
StmtSemicList “}”

StmtCommaList ➔  ε | Stmt | Stmt “,” StmtCommaList
ExprCommaList ➔  ε | Expr | Expr “,” ExprCommaList
StmtSemicList    ➔  ε | Stmt | Stmt “;” StmtSemicList

Expr ➔ . . .
Stmt ➔ . . .

Full Language Grammar Sketch

Program ➔ VarDeclList FuncDeclList
VarDeclList ➔ ε  | VarDecl | VarDecl VarDeclList
VarDecl ➔ Type IdentCommaList “;”
IdentCommaList ➔ Ident | Ident “,” IdentCommaList
Type ➔ int | char | float
FuncDeclList ➔ ε | FuncDecl | FuncDecl FuncDeclList

FuncDecl ➔ Type Ident “(“ ArgList “)” “{“ VarDeclList StmtList “}”
StmtList ➔ ε | Stmt | Stmt StmtList

Stmt ➔ Ident “=“ Expr “;” | ForStatement | ...
Expr ➔ ...
Ident ➔ ...

Using * notations (not + here)

Program ➔ VarDeclList FuncDeclList
VarDeclList ➔ VarDecl*
VarDecl ➔ Type IdentCommaList “;”
IdentCommaList ➔ Ident (“,” Ident)*
Type ➔ int | char | float
FuncDeclList ➔ FuncDecl*
FuncDecl ➔ Type Ident “(“ ArgList “)” “{“ VarDeclList StmtList “}”
StmtList ➔ Stmt*
Stmt ➔ Ident “=“ Expr “;” | ForStatement | ...
Expr ➔ ...
Ident ➔ ...

Real-world CFGs
 Some sample grammars found on the Web

 LISP:     7 rules
 PROLOG:  19 rules
 Java:     30 rules
 C:        60 rules
 Ada:      280 rules

 LISP is particularly easy because
 No operators, just function calls
 Therefore no precedence, associativity

 LISP is thus very easy to parse
 In the Java specification the description of operator 

precedence and associativity takes 25 pages



So What Now?
 We want to write a compiler for a given language
 Lexing

 We come up with a definition of the tokens 
embodied in regular expressions

 We build a lexer using a tool
 In the previous set of lecture notes, we have used 

ANTLR to do this
 Parsing

 We come up with a definition of the syntax 
embodied in a context-free grammar

 We build a parser using a tool
 Let’s use ANTLR again for a simple language!

Our Language
 We have all the tokens we’ve already defined in our lexer:

 IF, ENDIF
 PRINT, INT, PLUS, LPAREN, RPAREN
 EQUAL, NOTEQUAL, ASSIGN, SEMICOLON
 INTEGER, NAME

 We want a very limited language with
 integer variable declarations
 assignments
 addition (only 2 operands)
 if (not else, only test for equality)
 semicolon-terminated statements
 white-spaces, tabs, carriage returns don’t matter

 Let’s look at an example program to get a sense of it

Example Program
int a;
int b;
a = 3;
b = a + 1;
if (b == 4) a = 2; endif
if (a == 3)  
    a = a + 1; 
    b = b + 6;
endif 
print a;
print b;
  

Let’s write/run the grammar

 Root non-terminal: program
 Let us now write the grammar in class 

together using ANTLR syntax...
 Using our simple Lexer as a starting point

 A (hopefully similar) grammar is posted on 
the course Website



Code Generation
 Now we have a parser that will reject syntactically 

incorrect code, and generate a parse tree for correct 
code

 The next step toward building a compiler is to generate 
code

 One easy but limited option is to use syntax-directed 
translation
 Attach actions to the rules of the grammar
 Use attributes to non-terminals and terminals in the grammar

 There is quite a bit of theory here, but instead we’ll just 
do it by example using the ANTLR syntax

 First let’s just review a few basic elements of this 
syntax

ANTLR Syntax-directed translation

 Each time a grammar symbol is evaluated 
you can insert Java code to be executed!

 Example:
program :
 {System.out.println(“Declarations!”);}
    declaration*
    {System.out.println(“Statement!”);}
    statements*
 {System.out.println(“Done!”);}
    ;

ANTLR Syntax-directed translation

 Each (lexer) token has an attribute called text 
that contains its lexeme

 Example:
declaration :
 INT NAME SEMICOLON
 {System.out.println(“Declared ”+$NAME.text);}
 ;

ANTLR Syntax-directed translation

 You can give your own names to symbols in 
case you have multiple occurrences

 Example:

something :
 {int a,b;}
 a=NAME EQUAL b=NAME SEMICOLON
 {System.out.println($a.text + ”-” + $b.text);}
 ;



ANTLR Syntax-directed translation

 You can create attributes for non-terminal 
grammar symbols and use them

 Example:
something :
    ident SEMICOLON
    {System.out.println(“stuff”+$ident.whatever);}
    ;

ident returns [String whatever]: 
       NAME 
       {$whatever = "somestring"+$NAME.text;} 
       ;

ANTLR Syntax-directed translation

 And with all this we can now implement our compiler
 Our goal: have ANTLR produce x86 assembly code 

that we can run!

 Let’s do it in class right now
 A (hopefully) similar version is posted on the course 

Web site
 There will be mistakes, questions, hiccups, and 

confusion
 But the goal is that we can all learn from this?
 Off we go....

Conclusion
 There is a LOT of depth to the topic of Compilers
 We’ve only scratched the surface here
 There are well-known books on compilers


