" JEE
The Big Picture Again
sourcei i
- code ! 1] |
sYh'tact'c +» Scanner [+ Parser optil—|optas ...—{optn ;
AnaIySIs i i machine
' Instruction Register | | Instruction ! code
! Selection Allocation Scheduling :
ICS312 i §
Machine-Level and ! !
. : COMPILER :
Systems Programming
Henri Casanova (henric@hawaii.edu)
- S -
Syntactic Analysis Grammar
® | exical Analysis was about ensuring that we extract m Question: How do we determine that a
a set of valid words (i.e., tokens/lexemes) from the sentence is syntactically correct?

source code

® But nothing says that the words make a coherent
sentence (i.e., program)

® Example:

m Answer: We check against a grammar!

m A grammar consists of rules that determine
which sentences are correct

“if while i == == == 12 + endif abcd” = Example in English:

Lexer will produce a stream of tokens: <TOKEN_IF> A sentence must have a verb
<TOKEN_WHILE> <TOKEN_NAME, “i"> <TOKEN_EQUAL> : .

<TOKEN_EQUAL> <TOKEN_EQUAL> <TOKEN_INTEGER,"12"> = Example in C:

<TOKEN_PLUS, “+”> <TOKEN_ENDIF> <TOKEN_NAME, “abcd”> A “{“ must have a matching “}’

This program is lexically correct, but syntactically incorrect




Grammar

® Regular expressions are one way we have seen for
specifying a set of rules
m Unfortunately they are not powerful enough for
describing the syntax of programming languages
® Example:
If we have 10 {* then me must have 10 ¥

We can’t implement this with regular expressions because
they do not have memory!
= no way of counting and remembering counts

®m Therefore we need a more powerful tool

® This tool is called Context-Free Grammars
And some additional mechanisms

Context-Free Grammars

m A context-free grammar (CFG) consists of a set of
production rules
® Each rule describes how a non-terminal symbol can
be “replaced” or “expanded” by a string that consists
of non-terminal symbols and terminal symbols
Terminal symbols are really tokens
Rules are written with syntax like regular expressions
® Rules can then be applied recursively

®m Eventually one reaches a string of only terminal
symbols, or so one hopes

® This string is syntactically correct according to the
grammatical rules!

m | et’'s see a simple example

CFG Example

m Set of non-terminals: A, B, C (uppercase initial)
m Start non-terminal: S (uppercase initial)
m Set of terminal symbols: a, b, c, d

m Set of production rules:
S=>A|BC
A->Aa|a
B - bBCb | b
C>dCcd|c
®m We can now start producing syntactically valid strings
by doing derivations
m Example derivations:

S - BC = bBCbC = bbCbC = bbdCcdbC = bbdccdbC >
bbdccdbc

S > A-> Aa > Aaa > Aaaa = aaaa

A Grammar for Expressions

Expr - Expr Op Expr

Expr - Number | Identifier

Identifier -> Letter | Letter Identifier
Letter - a-z

Op S 4T

Number -> Digit Number | Digit

Digit >0(1|2]|3]|4|5|6]7]|8]9

Expr = Expr Op Expr = Number Op Expr =
Digit Number Op Expr = 3 Number Op Expr = 34 Op Expr >
34 * Expr = 34 * Identifier & 34 * Letter Identifier =
34 * a Identifier > 34 * a Letter = 34 * ax




" JEE
What is Parsing?

®m What we just saw is the process of, starting with the start
symbol and, through a sequence of rule derivations, obtain a
string of terminal symbols
We could generate all correct programs (infinite set though)
® Parsing: the other way around
Give a string of non-terminals, the process of discovering a
sequence of rule derivations that produce this particular string
m \When we say we can'’t parse a string, we mean that we can'’t
find any legal way in which the string can be obtained from the
start symbol through derivations

® What we want to build is a parser: a program that takes in a
string of tokens (terminal symbols) and discovers a derivation
sequence, thus validating that the input is a syntactically
correct program

" JEE
Derivations as Trees

® A convenient and natural way to represent a sequence of
derivations is a syntactic tree or parse tree

®  Example: Expr = Expr Op Expr = Number Op Expr = Digit Number Op

Expr = 3 Number Op Expr = 34 Op Expr = 34 * Expr = 34 * Identifier >
34 * Letter Identifier & 34 * a Identifier = 34 * a Letter = 34 * ax

Expr
Expr Expr
0]
/ ‘p AN
Number N Identifier
Digit ~ Number Letter Identifier
| | | |
3 Digit a '—et‘ter

l
4 X

" JEE
Derivations as Trees

® |n the parser, derivations are implemented as trees
m Often, we draw trees without the full derivations
®m Example:

Expr
Expr Expr
O
/ ‘p AN
Number Identifier

| * |

34 ax

" JEE
Ambiguity

m We call a grammar ambiguous if a string of
terminal symbols can be reached by two
different derivation sequences

® |n other terms, a string can have more than
one parse tree

m |t turns out that our expression grammar is
ambiguous!

m [ et’'s show that string 3*5+8 has two parse
trees




" JEE
Ambiguity

Expr Op Expr Expr/Oh(pr
T \ = S
Expr Op  Expr * 8 3 * Expr Op  Expr
| \ \ | \ \

3 * 5 5 + 8

“left parse-tree” “right parse-tree”

" JEE
Problems with Ambiguity

Problem: syntax impacts meaning
For our example string, we’d like to see the left tree because we
most likely want * to have a higher precedence than +

m We don’t like ambiguity because it makes the parsers difficult to
design because we don’t know which parse tree will be discovered
when there are multiple possibilities

So we often want to disambiguate grammars

It turns out that it is possible to modify grammars to make them non-
ambiguous

by adding non-terminals
by adding/rewriting production rules

® |n the case of our expression grammar, we can rewrite the grammar
to remove ambiguity and to ensure that parse trees match our
notion of operator precedence

We get two benefits for the price of one
Would work for many operators and many precedence relations

"
Non-Ambiguous Grammar

Expr = Term | Expr + Term | Expr - Term
Term - Term * Factor

| Term / Factor Expr
| Factor / l
Expr -
Factor - Number | Identifier PN Torm
Expr + Term
Example: 4*5+3-8*9 / \ / l \
Term Factor Term * Factor
RN \ \ \
Term «  Factor Number Factor Number
] \
Factor Nur\nber ;\5 Nurr‘1ber EL
\
Nurr‘1ber 5‘ 8
4

" JEE
Non-Ambiguous Grammar

Expr = Term | Expr + Term | Expr - Term
Term - Term * Factor

| Term / Factor Expr
| Factor / ‘
Expr -
Factor = Number | Identifier AR S
Expr + Term
Example: 4*5+3-8*9 | I VAR
/Term\ Factor Term * Factor
\ \ \
Term *I Factor Number FaTtor Number
I
Factor Nur\nber ;l3 Number J;
I
Number |

| ° ;

4




"
Another Example Grammar

ForStatement = for “(“ StmtCommalList ;"
ExprCommalList “;” StmtCommalList )" “{*
StmtSemicList “}’

StmtCommalList & ¢ | Stmt | Stmt “,” StmtCommalList

ExprCommalList & ¢ | Expr | Expr “,” ExprCommalList
StmtSemicList = ¢ | Stmt | Stmt “;” StmtSemicList

Expr=>...
Stmt-> . ..

" JE
Full Language Grammar Sketch

Program => VarDeclList FuncDeclList
VarDeclList = ¢ | VarDecl | VarDecl VarDeclList
VarDecl = Type IdentCommalList “;”

IdentCommalList => Ident | Ident “,” IdentCommalL.ist

Type => int | char | float

FuncDeclList = ¢ | FuncDecl | FuncDecl FuncDeclList
FuncDecl = Type Ident “(“ ArgList *)” “{* VarDeclList StmtList “}"
StmitList = ¢ | Stmt | Stmt StmtList

Stmt => Ident “=* Expr “;” | ForStatement | ...

Expr=> ...

Ident=> ...

"
Using * notations (not + here)

Program => VarDeclList FuncDeclList
VarDeclList = VarDecl*

VarDecl = Type IdentCommalList “;”
IdentCommalList = Ident (“,” Ident)*

Type = int | char | float

FuncDeclList = FuncDecl*

FuncDecl = Type Ident “(“ ArgList “)” “{* VarDeclList StmtList “}"
StmtList = Stmt*

Stmt = Ident “=* Expr “;” | ForStatement | ...

Expr=> ...

Ident=> ...

" JEE
Real-world CFGs

® Some sample grammars found on the Web

LISP: 7 rules
PROLOG: 19 rules
Java: 30 rules
C: 60 rules
Ada: 280 rules

m | ISP is particularly easy because
No operators, just function calls
Therefore no precedence, associativity

m | |SP is thus very easy to parse

® |n the Java specification the description of operator
precedence and associativity takes 25 pages




So What Now?

® We want to write a compiler for a given language
® | exing
We come up with a definition of the tokens
embodied in regular expressions

We build a lexer using a tool

In the previous set of lecture notes, we have used
ANTLR to do this

® Parsing

We come up with a definition of the syntax
embodied in a context-free grammar

We build a parser using a tool
Let's use ANTLR again for a simple language!

Our Language

= We have all the tokens we’ve already defined in our lexer:
IF, ENDIF
PRINT, INT, PLUS, LPAREN, RPAREN
EQUAL, NOTEQUAL, ASSIGN, SEMICOLON
INTEGER, NAME

= We want a very limited language with
integer variable declarations
assignments
addition (only 2 operands)
if (not else, only test for equality)
semicolon-terminated statements
white-spaces, tabs, carriage returns don’t matter

m |et’s look at an example program to get a sense of it

Example Program

int a;
int b;
a=3;
b=a+1;
if (b == 4) a = 2; endif
if (a == 3)
a=a+1;
b=Db+ 6;
endif
print a;

print b;

Let’s write/run the grammar

® Root non-terminal: program

® | et us now write the grammar in class
together using ANTLR syntax...

Using our simple Lexer as a starting point

m A (hopefully similar) grammar is posted on
the course Website




" JEE
Code Generation

= Now we have a parser that will reject syntactically
incorrect code, and generate a parse tree for correct
code
® The next step toward building a compiler is to generate
code
®m One easy but limited option is to use syntax-directed
translation
Attach actions to the rules of the grammar
Use afttributes to non-terminals and terminals in the grammar
®m There is quite a bit of theory here, but instead we’ll just
do it by example using the ANTLR syntax
m First let’s just review a few basic elements of this
syntax

" JEE
ANTLR Syntax-directed translation

m Each time a grammar symbol is evaluated
you can insert Java code to be executed!
m Example:
program :
{System.out.println(“Declarations!”) ;}
declaration*
{System.out.println(“Statement!”) ;}
statements*
{System.out.println(“Done!”) ;}

4

" JEE
ANTLR Syntax-directed translation

m Each (lexer) token has an attribute called text
that contains its lexeme
m Example:

declaration :
INT NAME SEMICOLON
{System.out.println(“Declared ”+$NAME.text) ;}

’

" JEE
ANTLR Syntax-directed translation

® You can give your own names to symbols in
case you have multiple occurrences

m Example:

something :
{int a,b;}
a=NAME EQUAL b=NAME SEMICOLON
{System.out.println($a.text + ”"-” + $b.text);}

’




" JEE
ANTLR Syntax-directed translation

® You can create attributes for non-terminal
grammar symbols and use them

m Example:

something :
ident SEMICOLON
{System.out.println(“stuff”+$ident.whatever) ;}

’

ident returns [String whatever]:
NAME
{$whatever = "somestring"+$NAME. text;}

’

" JEE
ANTLR Syntax-directed translation

® And with all this we can now implement our compiler

®m Qur goal: have ANTLR produce x86 assembly code
that we can run!

m | et's do it in class right now

A (hopefully) similar version is posted on the course
Web site

®m There will be mistakes, questions, hiccups, and
confusion

m But the goal is that we can all learn from this?
m Off we go....

" JEEE
Conclusion

®m There is a LOT of depth to the topic of Compilers
m \We've only scratched the surface here
®m There are well-known books on compilers

ompilers
) inzir;:'lje;, (:)eclmiques,

Compilers
e




