
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Syntactic
Analysis

The Big Picture Again

Scanner

source
code

Parser Opt1 Opt2 Optn. . .

Instruction
Selection

Register
Allocation

Instruction
Scheduling

machine
code

COMPILER

Syntactic Analysis
 Lexical Analysis was about ensuring that we extract

a set of valid words (i.e., tokens/lexemes) from the
source code

 But nothing says that the words make a coherent
sentence (i.e., program)

 Example:
 “if while i == == == 12 + endif abcd”
 Lexer will produce a stream of tokens: <TOKEN_IF>

<TOKEN_WHILE> <TOKEN_NAME, “i”> <TOKEN_EQUAL>
<TOKEN_EQUAL> <TOKEN_EQUAL> <TOKEN_INTEGER,”12”>
<TOKEN_PLUS, “+”> <TOKEN_ENDIF> <TOKEN_NAME, “abcd”>

 This program is lexically correct, but syntactically incorrect

Grammar

 Question: How do we determine that a
sentence is syntactically correct?

 Answer: We check against a grammar!
 A grammar consists of rules that determine

which sentences are correct
 Example in English:

 A sentence must have a verb
 Example in C:

 A “{“ must have a matching “}”

Grammar
 Regular expressions are one way we have seen for

specifying a set of rules
 Unfortunately they are not powerful enough for

describing the syntax of programming languages
 Example:

 If we have 10 ‘{‘ then me must have 10 ‘}’
 We can’t implement this with regular expressions because

they do not have memory!
 no way of counting and remembering counts

 Therefore we need a more powerful tool
 This tool is called Context-Free Grammars

 And some additional mechanisms

Context-Free Grammars
 A context-free grammar (CFG) consists of a set of

production rules
 Each rule describes how a non-terminal symbol can

be “replaced” or “expanded” by a string that consists
of non-terminal symbols and terminal symbols
 Terminal symbols are really tokens
 Rules are written with syntax like regular expressions

 Rules can then be applied recursively
 Eventually one reaches a string of only terminal

symbols, or so one hopes
 This string is syntactically correct according to the

grammatical rules!
 Let’s see a simple example

CFG Example
 Set of non-terminals: A, B, C (uppercase initial)
 Start non-terminal: S (uppercase initial)
 Set of terminal symbols: a, b, c, d
 Set of production rules:

 S ➔ A | BC
 A ➔ Aa | a
 B ➔ bBCb | b
 C ➔ dCcd | c

 We can now start producing syntactically valid strings
by doing derivations

 Example derivations:
S ➔ BC ➔ bBCbC ➔ bbCbC ➔ bbdCcdbC ➔ bbdccdbC ➔

bbdccdbc
S ➔ A ➔ Aa ➔ Aaa ➔ Aaaa ➔ aaaa

A Grammar for Expressions
Expr ➔ Expr Op Expr
Expr ➔ Number | Identifier
Identifier ➔ Letter | Letter Identifier
Letter ➔ a-z
Op ➔ “+” | “-” | “*” | “/”
Number ➔ Digit Number | Digit
Digit ➔ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Expr ➔ Expr Op Expr ➔ Number Op Expr ➔
 Digit Number Op Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔
 34 * Expr ➔ 34 * Identifier ➔ 34 * Letter Identifier ➔
 34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax

What is Parsing?
 What we just saw is the process of, starting with the start

symbol and, through a sequence of rule derivations, obtain a
string of terminal symbols
 We could generate all correct programs (infinite set though)

 Parsing: the other way around
 Give a string of non-terminals, the process of discovering a

sequence of rule derivations that produce this particular string
 When we say we can’t parse a string, we mean that we can’t

find any legal way in which the string can be obtained from the
start symbol through derivations

 What we want to build is a parser: a program that takes in a
string of tokens (terminal symbols) and discovers a derivation
sequence, thus validating that the input is a syntactically
correct program

Derivations as Trees
 A convenient and natural way to represent a sequence of

derivations is a syntactic tree or parse tree
 Example: Expr ➔ Expr Op Expr ➔ Number Op Expr ➔ Digit Number Op

Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔ 34 * Expr ➔ 34 * Identifier ➔
34 * Letter Identifier ➔ 34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax

Expr

Expr
Op

Expr

Number
*

Identifier

Letter Identifier

Letter

NumberDigit

Digit

x

a

4

3

Derivations as Trees
 In the parser, derivations are implemented as trees
 Often, we draw trees without the full derivations
 Example:

Expr

Expr
Op

Expr

Number
*

Identifier

ax34

Ambiguity

 We call a grammar ambiguous if a string of
terminal symbols can be reached by two
different derivation sequences

 In other terms, a string can have more than
one parse tree

 It turns out that our expression grammar is
ambiguous!

 Let’s show that string 3*5+8 has two parse
trees

Ambiguity

Expr

Expr Op Expr

3 * ExprExpr Op

5 8+

“right parse-tree”

Expr

ExprOpExpr

8+ExprExpr Op

3 5*

“left parse-tree”

Problems with Ambiguity
 Problem: syntax impacts meaning
 For our example string, we’d like to see the left tree because we

most likely want * to have a higher precedence than +
 We don’t like ambiguity because it makes the parsers difficult to

design because we don’t know which parse tree will be discovered
when there are multiple possibilities

 So we often want to disambiguate grammars
 It turns out that it is possible to modify grammars to make them non-

ambiguous
 by adding non-terminals
 by adding/rewriting production rules

 In the case of our expression grammar, we can rewrite the grammar
to remove ambiguity and to ensure that parse trees match our
notion of operator precedence
 We get two benefits for the price of one
 Would work for many operators and many precedence relations

Non-Ambiguous Grammar
Expr ➔ Term | Expr + Term | Expr - Term
Term ➔ Term * Factor
 | Term / Factor
 | Factor

Factor ➔ Number | Identifier

Example: 4*5+3-8*9

Expr

Expr -

Term
Expr + Term

Term Factor*Factor

Factor

Number

NumberNumber

Term

Term Factor*

Factor

Number

4

Number 3

5 8

9

Non-Ambiguous Grammar
Expr ➔ Term | Expr + Term | Expr - Term
Term ➔ Term * Factor
 | Term / Factor
 | Factor

Factor ➔ Number | Identifier

Example: 4*5+3-8*9

Expr

Expr -

Term
Expr + Term

Term Factor*Factor

Factor

Number

NumberNumber

Term

Term Factor*

Factor

Number

4

Number 3

5 8

9

Another Example Grammar

ForStatement ➔ for “(“ StmtCommaList “;”
ExprCommaList “;” StmtCommaList ”)” “{“
StmtSemicList “}”

StmtCommaList ➔ ε | Stmt | Stmt “,” StmtCommaList
ExprCommaList ➔ ε | Expr | Expr “,” ExprCommaList
StmtSemicList ➔ ε | Stmt | Stmt “;” StmtSemicList

Expr ➔ . . .
Stmt ➔ . . .

Full Language Grammar Sketch

Program ➔ VarDeclList FuncDeclList
VarDeclList ➔ ε | VarDecl | VarDecl VarDeclList
VarDecl ➔ Type IdentCommaList “;”
IdentCommaList ➔ Ident | Ident “,” IdentCommaList
Type ➔ int | char | float
FuncDeclList ➔ ε | FuncDecl | FuncDecl FuncDeclList

FuncDecl ➔ Type Ident “(“ ArgList “)” “{“ VarDeclList StmtList “}”
StmtList ➔ ε | Stmt | Stmt StmtList

Stmt ➔ Ident “=“ Expr “;” | ForStatement | ...
Expr ➔ ...
Ident ➔ ...

Using * notations (not + here)

Program ➔ VarDeclList FuncDeclList
VarDeclList ➔ VarDecl*
VarDecl ➔ Type IdentCommaList “;”
IdentCommaList ➔ Ident (“,” Ident)*
Type ➔ int | char | float
FuncDeclList ➔ FuncDecl*
FuncDecl ➔ Type Ident “(“ ArgList “)” “{“ VarDeclList StmtList “}”
StmtList ➔ Stmt*
Stmt ➔ Ident “=“ Expr “;” | ForStatement | ...
Expr ➔ ...
Ident ➔ ...

Real-world CFGs
 Some sample grammars found on the Web

 LISP: 7 rules
 PROLOG: 19 rules
 Java: 30 rules
 C: 60 rules
 Ada: 280 rules

 LISP is particularly easy because
 No operators, just function calls
 Therefore no precedence, associativity

 LISP is thus very easy to parse
 In the Java specification the description of operator

precedence and associativity takes 25 pages

So What Now?
 We want to write a compiler for a given language
 Lexing

 We come up with a definition of the tokens
embodied in regular expressions

 We build a lexer using a tool
 In the previous set of lecture notes, we have used

ANTLR to do this
 Parsing

 We come up with a definition of the syntax
embodied in a context-free grammar

 We build a parser using a tool
 Let’s use ANTLR again for a simple language!

Our Language
 We have all the tokens we’ve already defined in our lexer:

 IF, ENDIF
 PRINT, INT, PLUS, LPAREN, RPAREN
 EQUAL, NOTEQUAL, ASSIGN, SEMICOLON
 INTEGER, NAME

 We want a very limited language with
 integer variable declarations
 assignments
 addition (only 2 operands)
 if (not else, only test for equality)
 semicolon-terminated statements
 white-spaces, tabs, carriage returns don’t matter

 Let’s look at an example program to get a sense of it

Example Program
int a;
int b;
a = 3;
b = a + 1;
if (b == 4) a = 2; endif
if (a == 3)
 a = a + 1;
 b = b + 6;
endif
print a;
print b;

Let’s write/run the grammar

 Root non-terminal: program
 Let us now write the grammar in class

together using ANTLR syntax...
 Using our simple Lexer as a starting point

 A (hopefully similar) grammar is posted on
the course Website

Code Generation
 Now we have a parser that will reject syntactically

incorrect code, and generate a parse tree for correct
code

 The next step toward building a compiler is to generate
code

 One easy but limited option is to use syntax-directed
translation
 Attach actions to the rules of the grammar
 Use attributes to non-terminals and terminals in the grammar

 There is quite a bit of theory here, but instead we’ll just
do it by example using the ANTLR syntax

 First let’s just review a few basic elements of this
syntax

ANTLR Syntax-directed translation

 Each time a grammar symbol is evaluated
you can insert Java code to be executed!

 Example:
program :
 {System.out.println(“Declarations!”);}
 declaration*
 {System.out.println(“Statement!”);}
 statements*
 {System.out.println(“Done!”);}
 ;

ANTLR Syntax-directed translation

 Each (lexer) token has an attribute called text
that contains its lexeme

 Example:
declaration :
 INT NAME SEMICOLON
 {System.out.println(“Declared ”+$NAME.text);}
 ;

ANTLR Syntax-directed translation

 You can give your own names to symbols in
case you have multiple occurrences

 Example:

something :
 {int a,b;}
 a=NAME EQUAL b=NAME SEMICOLON
 {System.out.println($a.text + ”-” + $b.text);}
 ;

ANTLR Syntax-directed translation

 You can create attributes for non-terminal
grammar symbols and use them

 Example:
something :
 ident SEMICOLON
 {System.out.println(“stuff”+$ident.whatever);}
 ;

ident returns [String whatever]:
 NAME
 {$whatever = "somestring"+$NAME.text;}
 ;

ANTLR Syntax-directed translation

 And with all this we can now implement our compiler
 Our goal: have ANTLR produce x86 assembly code

that we can run!

 Let’s do it in class right now
 A (hopefully) similar version is posted on the course

Web site
 There will be mistakes, questions, hiccups, and

confusion
 But the goal is that we can all learn from this?
 Off we go....

Conclusion
 There is a LOT of depth to the topic of Compilers
 We’ve only scratched the surface here
 There are well-known books on compilers

