
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Syntactic
Analysis

The Big Picture Again

Scanner

source
code

Parser Opt1 Opt2 Optn. . .

Instruction
Selection

Register
Allocation

Instruction
Scheduling

machine
code

COMPILER

Syntactic Analysis
 Lexical Analysis was about ensuring that we extract

a set of valid words (i.e., tokens/lexemes) from the
source code

 But nothing says that the words make a coherent
sentence (i.e., program)

 Example:
 “if while i == == == 12 + endif abcd”
 Lexer will produce a stream of tokens: <TOKEN_IF>

<TOKEN_WHILE> <TOKEN_NAME, “i”> <TOKEN_EQUAL>
<TOKEN_EQUAL> <TOKEN_EQUAL> <TOKEN_INTEGER,”12”>
<TOKEN_PLUS, “+”> <TOKEN_ENDIF> <TOKEN_NAME, “abcd”>

 This program is lexically correct, but syntactically incorrect

Grammar

 Question: How do we determine that a
sentence is syntactically correct?

 Answer: We check against a grammar!
 A grammar consists of rules that determine

which sentences are correct
 Example in English:

 A sentence must have a verb
 Example in C:

 A “{“ must have a matching “}”

Grammar
 Regular expressions are one way we have seen for

specifying a set of rules
 Unfortunately they are not powerful enough for

describing the syntax of programming languages
 Example:

 If we have 10 ‘{‘ then me must have 10 ‘}’
 We can’t implement this with regular expressions because

they do not have memory!
 no way of counting and remembering counts

 Therefore we need a more powerful tool
 This tool is called Context-Free Grammars

 And some additional mechanisms

Context-Free Grammars
 A context-free grammar (CFG) consists of a set of

production rules
 Each rule describes how a non-terminal symbol can

be “replaced” or “expanded” by a string that consists
of non-terminal symbols and terminal symbols
 Terminal symbols are really tokens
 Rules are written with syntax like regular expressions

 Rules can then be applied recursively
 Eventually one reaches a string of only terminal

symbols, or so one hopes
 This string is syntactically correct according to the

grammatical rules!
 Let’s see a simple example

CFG Example
 Set of non-terminals: A, B, C (uppercase initial)
 Start non-terminal: S (uppercase initial)
 Set of terminal symbols: a, b, c, d
 Set of production rules:

 S ➔ A | BC
 A ➔ Aa | a
 B ➔ bBCb | b
 C ➔ dCcd | c

 We can now start producing syntactically valid strings
by doing derivations

 Example derivations:
S ➔ BC ➔ bBCbC ➔ bbCbC ➔ bbdCcdbC ➔ bbdccdbC ➔

bbdccdbc
S ➔ A ➔ Aa ➔ Aaa ➔ Aaaa ➔ aaaa

A Grammar for Expressions
Expr ➔ Expr Op Expr
Expr ➔ Number | Identifier
Identifier ➔ Letter | Letter Identifier
Letter ➔ a-z
Op ➔ “+” | “-” | “*” | “/”
Number ➔ Digit Number | Digit
Digit ➔ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Expr ➔ Expr Op Expr ➔ Number Op Expr ➔
 Digit Number Op Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔
 34 * Expr ➔ 34 * Identifier ➔ 34 * Letter Identifier ➔
 34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax

What is Parsing?
 What we just saw is the process of, starting with the start

symbol and, through a sequence of rule derivations, obtain a
string of terminal symbols
 We could generate all correct programs (infinite set though)

 Parsing: the other way around
 Give a string of non-terminals, the process of discovering a

sequence of rule derivations that produce this particular string
 When we say we can’t parse a string, we mean that we can’t

find any legal way in which the string can be obtained from the
start symbol through derivations

 What we want to build is a parser: a program that takes in a
string of tokens (terminal symbols) and discovers a derivation
sequence, thus validating that the input is a syntactically
correct program

Derivations as Trees
 A convenient and natural way to represent a sequence of

derivations is a syntactic tree or parse tree
 Example: Expr ➔ Expr Op Expr ➔ Number Op Expr ➔ Digit Number Op

Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔ 34 * Expr ➔ 34 * Identifier ➔
34 * Letter Identifier ➔ 34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax

Expr

Expr
Op

Expr

Number
*

Identifier

Letter Identifier

Letter

NumberDigit

Digit

x

a

4

3

Derivations as Trees
 In the parser, derivations are implemented as trees
 Often, we draw trees without the full derivations
 Example:

Expr

Expr
Op

Expr

Number
*

Identifier

ax34

Ambiguity

 We call a grammar ambiguous if a string of
terminal symbols can be reached by two
different derivation sequences

 In other terms, a string can have more than
one parse tree

 It turns out that our expression grammar is
ambiguous!

 Let’s show that string 3*5+8 has two parse
trees

Ambiguity

Expr

Expr Op Expr

3 * ExprExpr Op

5 8+

“right parse-tree”

Expr

ExprOpExpr

8+ExprExpr Op

3 5*

“left parse-tree”

Problems with Ambiguity
 Problem: syntax impacts meaning
 For our example string, we’d like to see the left tree because we

most likely want * to have a higher precedence than +
 We don’t like ambiguity because it makes the parsers difficult to

design because we don’t know which parse tree will be discovered
when there are multiple possibilities

 So we often want to disambiguate grammars
 It turns out that it is possible to modify grammars to make them non-

ambiguous
 by adding non-terminals
 by adding/rewriting production rules

 In the case of our expression grammar, we can rewrite the grammar
to remove ambiguity and to ensure that parse trees match our
notion of operator precedence
 We get two benefits for the price of one
 Would work for many operators and many precedence relations

Non-Ambiguous Grammar
Expr ➔ Term | Expr + Term | Expr - Term
Term ➔ Term * Factor
 | Term / Factor
 | Factor

Factor ➔ Number | Identifier

Example: 4*5+3-8*9

Expr

Expr -

Term
Expr + Term

Term Factor*Factor

Factor

Number

NumberNumber

Term

Term Factor*

Factor

Number

4

Number 3

5 8

9

Non-Ambiguous Grammar
Expr ➔ Term | Expr + Term | Expr - Term
Term ➔ Term * Factor
 | Term / Factor
 | Factor

Factor ➔ Number | Identifier

Example: 4*5+3-8*9

Expr

Expr -

Term
Expr + Term

Term Factor*Factor

Factor

Number

NumberNumber

Term

Term Factor*

Factor

Number

4

Number 3

5 8

9

Another Example Grammar

ForStatement ➔ for “(“ StmtCommaList “;”
ExprCommaList “;” StmtCommaList ”)” “{“
StmtSemicList “}”

StmtCommaList ➔ ε | Stmt | Stmt “,” StmtCommaList
ExprCommaList ➔ ε | Expr | Expr “,” ExprCommaList
StmtSemicList ➔ ε | Stmt | Stmt “;” StmtSemicList

Expr ➔ . . .
Stmt ➔ . . .

Full Language Grammar Sketch

Program ➔ VarDeclList FuncDeclList
VarDeclList ➔ ε | VarDecl | VarDecl VarDeclList
VarDecl ➔ Type IdentCommaList “;”
IdentCommaList ➔ Ident | Ident “,” IdentCommaList
Type ➔ int | char | float
FuncDeclList ➔ ε | FuncDecl | FuncDecl FuncDeclList

FuncDecl ➔ Type Ident “(“ ArgList “)” “{“ VarDeclList StmtList “}”
StmtList ➔ ε | Stmt | Stmt StmtList

Stmt ➔ Ident “=“ Expr “;” | ForStatement | ...
Expr ➔ ...
Ident ➔ ...

Using * notations (not + here)

Program ➔ VarDeclList FuncDeclList
VarDeclList ➔ VarDecl*
VarDecl ➔ Type IdentCommaList “;”
IdentCommaList ➔ Ident (“,” Ident)*
Type ➔ int | char | float
FuncDeclList ➔ FuncDecl*
FuncDecl ➔ Type Ident “(“ ArgList “)” “{“ VarDeclList StmtList “}”
StmtList ➔ Stmt*
Stmt ➔ Ident “=“ Expr “;” | ForStatement | ...
Expr ➔ ...
Ident ➔ ...

Real-world CFGs
 Some sample grammars found on the Web

 LISP: 7 rules
 PROLOG: 19 rules
 Java: 30 rules
 C: 60 rules
 Ada: 280 rules

 LISP is particularly easy because
 No operators, just function calls
 Therefore no precedence, associativity

 LISP is thus very easy to parse
 In the Java specification the description of operator

precedence and associativity takes 25 pages

So What Now?
 We want to write a compiler for a given language
 Lexing

 We come up with a definition of the tokens
embodied in regular expressions

 We build a lexer using a tool
 In the previous set of lecture notes, we have used

ANTLR to do this
 Parsing

 We come up with a definition of the syntax
embodied in a context-free grammar

 We build a parser using a tool
 Let’s use ANTLR again for a simple language!

Our Language
 We have all the tokens we’ve already defined in our lexer:

 IF, ENDIF
 PRINT, INT, PLUS, LPAREN, RPAREN
 EQUAL, NOTEQUAL, ASSIGN, SEMICOLON
 INTEGER, NAME

 We want a very limited language with
 integer variable declarations
 assignments
 addition (only 2 operands)
 if (not else, only test for equality)
 semicolon-terminated statements
 white-spaces, tabs, carriage returns don’t matter

 Let’s look at an example program to get a sense of it

Example Program
int a;
int b;
a = 3;
b = a + 1;
if (b == 4) a = 2; endif
if (a == 3)
 a = a + 1;
 b = b + 6;
endif
print a;
print b;

Let’s write/run the grammar

 Root non-terminal: program
 Let us now write the grammar in class

together using ANTLR syntax...
 Using our simple Lexer as a starting point

 A (hopefully similar) grammar is posted on
the course Website

Code Generation
 Now we have a parser that will reject syntactically

incorrect code, and generate a parse tree for correct
code

 The next step toward building a compiler is to generate
code

 One easy but limited option is to use syntax-directed
translation
 Attach actions to the rules of the grammar
 Use attributes to non-terminals and terminals in the grammar

 There is quite a bit of theory here, but instead we’ll just
do it by example using the ANTLR syntax

 First let’s just review a few basic elements of this
syntax

ANTLR Syntax-directed translation

 Each time a grammar symbol is evaluated
you can insert Java code to be executed!

 Example:
program :
 {System.out.println(“Declarations!”);}
 declaration*
 {System.out.println(“Statement!”);}
 statements*
 {System.out.println(“Done!”);}
 ;

ANTLR Syntax-directed translation

 Each (lexer) token has an attribute called text
that contains its lexeme

 Example:
declaration :
 INT NAME SEMICOLON
 {System.out.println(“Declared ”+$NAME.text);}
 ;

ANTLR Syntax-directed translation

 You can give your own names to symbols in
case you have multiple occurrences

 Example:

something :
 {int a,b;}
 a=NAME EQUAL b=NAME SEMICOLON
 {System.out.println($a.text + ”-” + $b.text);}
 ;

ANTLR Syntax-directed translation

 You can create attributes for non-terminal
grammar symbols and use them

 Example:
something :
 ident SEMICOLON
 {System.out.println(“stuff”+$ident.whatever);}
 ;

ident returns [String whatever]:
 NAME
 {$whatever = "somestring"+$NAME.text;}
 ;

ANTLR Syntax-directed translation

 And with all this we can now implement our compiler
 Our goal: have ANTLR produce x86 assembly code

that we can run!

 Let’s do it in class right now
 A (hopefully) similar version is posted on the course

Web site
 There will be mistakes, questions, hiccups, and

confusion
 But the goal is that we can all learn from this?
 Off we go....

Conclusion
 There is a LOT of depth to the topic of Compilers
 We’ve only scratched the surface here
 There are well-known books on compilers

