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REs for Keywords

 It is easy to define a RE that describes all keywords

 Key = ‘if’ | ‘else’ | ‘for’ | ‘while’ | ‘int’ | ..

 These can be split in groups if needed
 
 Keyword = ‘if’ | ‘else’ | ‘for’ | …
 Type = ‘int’ | ‘double’ | ‘long’ | …

 The choice depends on what the next component 
(i.e., the parser) would like to see

RE for Numbers
 Straightforward representation for integers

 digits = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
 integer = digits+

 RE systems allow the use of ‘-’ for ranges, sometimes with ‘[‘ and ‘]’
 digits = [0-9]+

 Floating point numbers are much more complicated
 2.00, .12e-12, 312.00001E+12, 4, 3.141e-12

 Here is one attempt
 (’+’|’-’|ε)(digit+ ‘.’? | digits* (’.’ digit+)) ((’E’|’e’)(’+’|’-’|ε) digit+)))?

 Note the difference between meta-character and language-
characters
 ‘+’ versus +,  ‘-’ versus -, ‘(’ versus (, etc. 

 Often books/documentations use different fonts for each level of 
language

RE for Identifiers

 Here is a typical description
 letter = a-z | A-Z
 ident = letter ( letter | digit | ‘_’)*

 Starts with a letter
 Has any number of letter or digit or ‘_’ afterwards

 In C: ident = (letter | ‘_’) (letter | digit | ‘_’)*



RE for Phone Numbers

 Simple RE
 digit = 0-9
 area = digit digit digit
 exchange = digit digit digit 
 local = digit digit digit digit
 phonenumber = ‘(’ area ‘)’ ‘ ‘? exchange (’-’|’ ‘) 

local

 The above describes the 103+3+4 strings of 
the L(phonenumber) language

Regular Expression Practice

 Write regular expressions for
 All strings over alphabet {a,b,c}
 All strings over alphabet {a,b,c} that contain 

substring ‘abc’
 All strings over alphabet {a,b,c} that consist of 

one or more a’s, followed by two b’s, followed by 
whatever sequence of a’s and c’s

 All strings over alphabet {a,b,c} such that they 
contain at least one of substrings ‘abc’ or ‘cba’

Regular Expression Practice

 Write regular expressions for
 All strings over alphabet {a,b,c}

 (a|b|c)*
 All strings over alphabet {a,b,c} that contain substring ‘abc’

 (a|b|c)*abc(a|b|c)*
 All strings over alphabet {a,b,c} that consist of one or more 

a’s, followed by two b’s, followed by whatever sequence of 
a’s and c’s

 a+bb(a|c)*
 All strings over alphabet {a,b,c} such that they contain at 

least one of substrings ‘abc’ or ‘cba’
 ((a|b|c)*abc(a|b|c)* | (a|b|c)*cba(a|b|c)*)

Automaton Examples

 This automaton accepts input ‘if’
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Automaton Examples

 This automaton accepts strings that start with a 0, then have any 
number of 1’s, and end with a 0

 Note the natural correspondence between automata and REs:  01*0
 Question: can we represent all REs with simple automata?
 Answer: yes
 Therefore, if we write a piece of code that implements arbitrary  

automata, we have a piece of code that implements arbitrary REs, 
and we have a lexer!
 Not _this_ simple, but close
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Example REs and DFA

 Say we want to represent RE ‘a*b*c*d*e’ with aDFA
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Example REs and NFA

 ‘a*b*c*d*e’: much simpler with a NFA
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 With ε-transitions, the automaton can ‘choose’ to 
skip ahead, non-deterministically 
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Example REs and NFA

 ‘a+b+c+d+e’: easy modification
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 But now we have multiple choices for a given 
character at each state!
 e.g., two ‘a’ arrows leaving n

a d
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Automaton vs. RE Practice
 Write REs for the following NFAs
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Automaton vs. RE Practice
 Write REs for the following NFAs
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a*b*(ε|ab*)

a*b*(ab*a | bab+)

A Grammar for Expressions

Expr   ➔ Expr  Op  Expr
Expr   ➔ Number | Identifier
Identifier  ➔ Letter | Letter Identifier
Letter   ➔ a-z
Op  ➔  “+” | “-” | “*” | “/”
Number ➔ Digit Number | Digit
Digit   ➔ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Expr ➔ Expr Op Expr ➔ Number Op Expr ➔ 
   Digit Number Op Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔
   34 * Expr ➔ 34 * Identifier ➔ 34 * Letter Identifier ➔ 
   34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax

Derivations as Trees
 A convenient and natural way to represent a sequence of 

derivations is a syntactic tree or parse tree
 Example: Expr ➔ Expr Op Expr ➔ Number Op Expr ➔ Digit Number Op 

Expr ➔ 3 Number Op Expr ➔ 34 Op Expr ➔ 34 * Expr ➔ 34 * Identifier ➔ 
34 * Letter Identifier ➔ 34 * a Identifier ➔ 34 * a Letter ➔ 34 * ax
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Derivations as Trees

 In the parser, derivations are implemented as trees
 Often, we draw trees without the full derivations
 Example:
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Grammar Practice

 Consider the CFG:
  S    →    ( L )   |   a
  L  →  L , S | S

Draw parse trees for:
 (a, a)
 (a, ((a, a), (a, a)))

Grammar Practice

 Consider the CFG:
  S    →    ( L )   |   a
  L  →  L , S | S

Draw parse trees for:
 (a, a)
 (a, ((a, a), (a, a)))
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Grammar Practice

 Consider the CFG:
  S    →    ( L )   |   a
  L  →  L , S | S

Draw parse trees for:
 (a, a)
 (a, ((a, a), (a, a)))
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Grammar Practice

 Write a CFG for the language of well-formed 
parenthesized expressions
 (), (()), ()(), (()()), etc.:  OK
 ()), )(, ((()), (((, etc.: not OK

Grammar Practice

 Write a CFG for the language of well-formed 
parenthesized expressions
 (), (()), ()(), (()()), etc.:  OK
 ()), )(, ((()), (((, etc.: not OK

P →  ()   |  PP  |  (P)

Grammar Practice

 Is the following grammar ambiguous?

 A  →     A “and” A | “not” A | “0” | “1” 

Grammar Practice

 Is the following grammar ambiguous?
 A  →     A “and” A | not A | 0 | 1 
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