
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Data Size and Arithmetic:
Examples and Sample
Problems

Example

mov al 0A7h ; as a programmer, I view this
 ; as a unsigned, 1-byte quantity
 ; (decimal 167)
mov bl 0A7h ; as a programmer, I view this
 ; as a signed 1-byte
 ; quantity (decimal -89)

movzx eax, al; ; extend to a 4-byte value
 ; (000000A7)
movsx ebx, bl; ; extend to a 4-byte value
 ; (FFFFFFA7)

Practice

 Consider the following code
 mov al, 0B2h
 movsx eax, al
 mov bx, eax
 movzx ebx, bx
 What’s the final value of eax?
 What’s the final value of ebx?

Practice (Solution)

 mov al, 0B2h

 movsx eax, al

 mov bx, eax

 movzx ebx, bx

?? ?? ?? B2 ?? ?? ?? ??

FF FF FF B2 ?? ?? ?? ??

FF FF FF B2 ?? ?? FF B2

FF FF FF B2 00 00 FF B2

EAX EBX

Example

 What does this code print?
 Or at least what’s the hex value of the decimal

value it prints?

unsigned short ushort; // 2-byte quantity
signed char schar; // 1-byte quantity
int integer; // 4-byte quantity

schar = 0xAF;
integer = (int) schar;
integer++;
ushort = integer;

printf("ushort = %d\n",ushort);

Example

unsigned short ushort;
signed char schar;
int integer;

schar = 0xAF;

integer = (int) schar;

integer++;

ushort = integer;

printf("ushort = %d\n",ushort);

AFschar

FFinteger FF FF AF

FFinteger FF FF B0

FFushort B0

Because printf doesn’t specify “h”
ushort is size augmented to 4-bytes
using movzx (because declared as
unsigned): 00 00 FF B0
The number is then printed as a signed
integer (“%d”): 65456

Carry/Overflow bits
 Which of these operations set the Carry bit to 1? (presumably

we care because we think of these as unsigned operations)
 0F12 + F212 (2-byte quantities)
 00E3 + F74F (2-byte quantities)
 F1 - FA (1-byte quantities)
 FB12 - A3AA (2-byte quantities)
 A314 - B010 (2-byte quantities)

 Which of these operations set the Overflow bit to 1?
(presumably we care because we think of these as signed
operations)
 00E3 + FF4F (2-byte quantities)
 F1 - 7A (1-byte quantities)

Carry/Overflow bits (Solution)
 Which of these operations set the Carry bit to 1?

 0F12
+ F212
= 10124 Carry bit is set

 00E3
+ F74F
= F832 Carry bit is not set

 F1 - FA: F1 < FA Carry bit is set
 FB12 - A3AA: FB12 > A3AA Carry bit is not set
 A314 - B010: A314 < B010 Carry bit is set

Carry/Overflow bits (Solution)
 Which of these operations set the Overflow bit to 1?

 00E3 + FF4F
 00E3 > 0, equal to decimal +227
 FF4F < 0, 2’s complement = 00B0+1 = B1, equal do decimal -177
 +243 - 177 = 50
 2 byte unsigned numbers are in [-32,768, +32,767]
 Overflow bit is not set

 F1 - 7A
 F1 < 0, 2’s complement = 0E+1 = 0F, equal to decimal -15
 7A > 0, equal to 122
 -15 - 122 = -137
 1-byte unsigned numbers are in [-128,+127]
 Overflow bit is set

Unsigned Overflow
 mov al, 0F0h ; al = F0h
 mov bl, 0A3h ; bl = A3h
 add al, bl ; al = al + bl
 movzx eax, al ; increase size for printing
 call print_int ; print al as an integer

 As a programmer we decided to do some computation with unsigned values
 We put value F0h in al (unsigned F0h is decimal 240)
 We put value A3h in bl (unsigned A3h is decimal 163)
 We add them together
 The “true” result should be decimal 240+163 = 403, which cannot be encoded on 8

bits (should be < 255)
 But the processor just goes ahead: F0 + A3 = 193h, and then drops the leftmost bits

to truncate to a 1-byte value to get 93h!
 To call print_int, we need the integer in eax, so we movzx al into eax
 print_int print the decimal value corresponding to 00000093h, that is: 147!
 This is obviously wrong, and we can tell (or will be able to shortly) because the carry

bit is in fact set to 1
 Note that this is all correct if we assume signed values and replace movzx by movsx,

but then our initial interpretation of the two values is different

On web site as
ics312_overflow_unsigned.asm

Signed Overflow
 mov al, 09Ah ; al = 9Ah
 mov bl, 073h ; bl = 73h
 sub al, bl ; al = al - bl
 movsx eax, al ; increase size for printing
 call print_int ; print al as an integer

 As a programmer we decided to do some computation with signed values
 We put value 9Ah in al (signed 9Ah is decimal -102)
 We put value 73h in bl (signed 73h is decimal +115)
 We subtract bl from al
 The “true” result should be decimal -102 - 115 = -217, which cannot be encoded on 8

bits (should be >= -128)
 But the processor just goes ahead: 9A - 73 = 27h
 To call print_int, we need the integer in eax, so we movsx al into eax
 print_int prints the decimal value corresponding to 00000027h, that is: 39!
 This is obviously wrong, and we can tell (or will be able to shortly) because the

overflow bit is in fact set to 1
 Note that this is all correct if we assume unsigned values and replace movsx by

movzx, but then our initial interpretation of the two values is different

On web site as
ics312_overflow_signed.asm

