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Numbers and Computers

 Throughout this course we will
 use binary and hexadecimal representations of 

numbers
 need to be aware of the ways in which the 

computer stores numbers
 So let us go through a simple review before 

we start learning how to write assembly code
 Numbers in different bases
 Number representation in computers and basic 

arithmetic
 More to come later on arithmetic



Numbers and bases
 We are used to thinking of numbers as written in 

decimal, that is, in base 10
  25  = 2*101 + 5*100

  136  = 1*102 + 3*101 + 6*100

 Each number is decomposed into a sum of terms
 Each term is the product of two factors

 A digit (from 0 to 9)
 The base (10) raised to a power corresponding to the digit’s 

position in the number

136  = … +  0*104 + 0*103 + 1*102 + 3*101 + 6*100

          = …00000136  
 We typically don’t write (an infinite number of) leading 0’s



Numbers and Bases
 Any number can be written in base b, using b digits

 If b = 10 we have “decimal” with 10 digits [0-9]
 If b = 2 we have “binary” with 2 digits [0,1], which are also called bits
 If b = 8 we have “octal” with 8 digits [0-7]
 If b = 16 we have “hexadecimal” with 16 digits [0-9,A,B,C,D,E,F]

 Computers use binary internally
 It’s easy to associate two states to a current

 Low voltage = 0, high voltage = 1
 Associating 16 states to a current is more complicated and error-prone

 However, binary is cumbersome
 The lower the base the longer the numbers!
 It’s really difficult for a human to remember binary

 Therefore we, as humans, like to use higher bases
 Bases that are powers of 2 make for easy translation to binary, and 

thus are particularly useful, and in particular hexadecimal



Binary Numbers
 Counting in binary:
  02  010

  12  110

  102  210

  112  310

  1002  410

  1012  510

  1102  610

  1112  710

  10002  810

  … 

 A binary number with 
d bits corresponds to 
integer values 
between 0 and 2d-1

 Example:
 An integer stored in 8 

bits has values 
between 0 and 255

 128+64+32+16+8+4+
2+1 = 255



Converting from Binary to Decimal

 We denote by XXXX2 a binary representation of a 
number and by XXXX10 a decimal representation

 Converting from binary to decimal is straightforward:
 100101102  = 1*27 + 1*24+1*22+1*21

    = 1*128 + 1*16 + 1*4 + 1*2
    = 15010
 The rightmost bit of a binary number is called the 

least significant bit
 The leftmost non-zero bit of a binary number is 

called the most significant bit
 If the least significant bit is 0, then the number is 

even, otherwise it’s odd



Converting from Decimal to Binary

 The conversion proceeds by a series of integer divisions by 2, and 
by recording the remainder of the division
 Integer division a/b:  a = b* q + remainder, where all are integers

 Example: converting 3710 into binary
 Divide 37 by 2:  37  = 2*18 + 1
 Divide 18 by 2:  18  = 2*9   + 0
 Divide 9 by 2:    9    = 2*4   + 1
 Divide 4 by 2:    4    = 2*2   + 0
 Divide 2 by 2:    2    = 2*1   + 0
 Divide 1 by 2:    1    = 2*0   + 1
 Result: 1001012

 The least significant bit is computed first
 The most significant bit is computed last
 Note that if we continue dividing, we get extraneous leading 0s

 …000001001012



Binary Arithmetic
 Adding a 0 to the right of a binary number multiplies 

it by 2
 101012   = 1610 + 410 + 110   = 2110

 1010102 = 3210 + 810 + 210   = 4210

 Adding two binary numbers is just like adding 
decimal numbers: using a carry

With no previous carryWith no previous carryWith no previous carryWith no previous carry With a previous carryWith a previous carryWith a previous carryWith a previous carry
   0
+ 0
= 0

   0
+ 1
= 1

   1
+ 0
= 1

   1
+ 1
= 0
   c

   0
+ 0
= 1

   0
+ 1
= 0
   c

   1
+ 0
= 0
   c

   1
+ 1
= 1
   c



Binary Addition

     1 0 0 1    910

     +      1 1 1 1    +    1510

     =   1 1 0 0 0                      =    2410

               1 0 1 0 0 1 1 0          16610             
+              1 1 0 0 0 0 1 1       + 19510

     =   1 0 1 1 0 1 0 0 1              =  36110

c

ccc

ccc



Counting in Hexadecimal

016=010 A16=1010  1416=2010    1E16=3010

116=110 B16=1110  1516=2110    1F16=3110

216=210 C16=1210  1616=2210    2016=3210

316=310 D16=1310  1716=2310    2116=3310

416=410 E16=1410  1816=2410    2216=3410

516=510 F16=1510  1916=2510    2316=3510

616=610 1016=1610  1A16=2610    2416=3610

716=710 1116=1710  1B16=2710    2516=3710

816=810 1216=1810  1C16=2810    2616=3810

916=910 1316=1910  1D16=2910    2716=3910



Converting from hex to decimal

 This is again straightforward

A203DE16 = 10*165 + 
                     2*164 + 
                     3*162 + 
                    13*161 + 
                    14*160  = 10,617,82210



Converting from decimal to hex

 Use the same idea as for binary
 Example: convert 123710

 1237  = 77*16 + 5
 77      = 4*16   + 13
 4        = 0*16   +  4
 Result: 4D516



Hexadecimal addition

   A 2 3 F   4153510  
 + 3 D 1 3      +   1563510

 = D F 5 2      = 5717010

       D 1 F F   5375910  
  +    A 4 D F       + 4220710

  =  1 7 6 D E       = 9596510

c

cccc



Why is hexadecimal useful?

 We need to think in binary because 
computers operate on binary quantities

 But binary is cumbersome
 However, hexadecimal makes it possible to 

represent binary quantities in a compact form
 Conversions back and forth from binary to 

hex are straightforward
 Just convert hex digits into 4-bit numbers
 Just convert 4-bit binary numbers into hex digits



Converting from hex to binary
 Consider A43FE216

 We convert each hex digit into a 4-bit binary number:
 A16: 10102

 416: 01002

 316: 00112

 F16: 11112

 E16: 11102

 216: 00102

 We “glue” them all together:
 A43FE216 = 1010010000111111111000102

 Note that:
 You must have the leading 0’s for the 4-bit numbers, which is what a 

computer would store anyway
 It all works because F16 = 1510, and a 4-bit number has maximum value 

of 24-1 = 1510



Converting from binary to hex

 Let’s convert 10010101011112   into hex
 We split it in 4-bit numbers, which we convert 

separately
 First we add leading 0’s to have a number of bits 

that’s a multiple of 4:
  0001 0010 1010 1111

 Then we convert
 00012 :  116  

 00102 :  216

 10102 :  A16

 11112 :  F16

 And the result:  10010101011112 = 12AF16



Integer representation
 A computer needs to store integers in memory/registers
 Stored using different numbers of bytes (1 byte = 8 bits):

 1-byte: “byte”
 2-byte: “half word” (or “word”)
 4-byte: “word” (or “double word”)
 8-byte: “double word” (or “paragraph”, or “quadword”)
 Different computers have used different word sizes, so it’s always a bit 

confusing to just talk about a “word” without any context
 Regardless of the number of bytes, integers are stored in binary
 Integers come in two flavors:

 Unsigned: values from 0 to 2b-1
 Signed: negatives values, with about the same number of negative 

values as the number of positive values
 You can actually declare variables as signed or unsigned in some 

high-level programming languages, like C



Sign-Magnitude
 Storing unsigned integers is easy: just store the bits of the 

integer’s binary representation
 Storing signed integer raises a question: how to store the 

sign?
 One approach is called sign-magnitude: reserve the leftmost 

bit to represent the sign
   00100101 denotes  + 01001012

   10100101 denotes  - 01001012

 It’s very easy to negate a number: just flip the leftmost bit
 Unfortunately, sign-magnitude complicates the logic of the 

CPU (i.e., ICS331-type stuff) 
 There are two representations for zero: 10000000 and 00000000
 Some operations are thus more complicated to implement in 

hardware



One’s complement
 Another idea to store a negative number is to take the 

complement (i.e., flip all bits) of its positive counterpart
 Example: I want to store integer -87

 8710 = 010101112

 -8710 = 10101000
 Simple, but still two representations for zero: 00000000 and 

11111111
 It turns out that computer logic to deal with 1’s complement 

arithmetic is complicated
 Note: it’s easy to compute the 1’s complement of a number 

represented in hexadecimal
 let’s consider: 5716

 Subtract each hex digit from F:   F-5=A, F-7=8
 1’s complement of 5716 is A816



Two’s complement
 While sign-magnitude and 1’s complement were used in older 

computers, nowadays all computers use 2’s complement
 Computing the 2’s complement is in two steps:

 Compute the 1’s complement of the positive number
 Add 1 to the result
 The gives the representation of the negative number

 Example: Let’s represent -8710
 8710 = 010101112   or   5716

 1’s complement: 10101000   or  A8
 Add one: 10101001   or  A9

 Let’s invert again
 We start with A9
 Invert: 56
 Add one: 57, which represents 8710



Two’s complement
 Note that when adding 1 in the second step a carry may be generated 

but is ignored!
 Difference between arithmetic and computer arithmetic
 When adding two X-bit quantities in a computer one always obtain another 

X-bit quantity (X=8, 16, 32, …)
 Example: Computing 2’s complement of 00000000

 Take the invert: 11111111
 Add one: 00000000   with a carry generated!

 Should be a 9-bit quantity: 100000000
 Therefore 0 has only one representation: a signed byte can store 

values from -128 to +127 (128 <0 values, and 128 >=0 values)
 It turns out that 2’s complement makes for very simple arithmetic logic 

when building ALUs
 From now on we always assumed 2’s complement representation
 Important: The leftmost bit still indicates the sign of the number (0: 

positive, 1: negative)
 In hex, if the left-most “digit” is 8, 9, A, B, C, D, E, or F, then the number is 

negative, otherwise it is positive



Ranges of Numbers
 For 1-byte values

 Unsigned
 Smallest value: 00 (010)
 Largest value: FF (25510)

 Signed
 Smallest value: 80 (-12810)
 Largest value: 7F (+12710)

 For 2-byte values
 Unsigned

 Smallest value: 0000 (010)
 Largest value: FFFF (65,53510)

 Signed
 Smallest value: 8000 (-32,76810)
 Largest value: 7FFF (+32,76710) 

 etc.



The Task of the (Assembly) Programmer
 The computer simply stores data as bits
 The computer internally has no idea what the data means

 It doesn’t know whether numbers are signed or unsigned
 We, as programmers have precise interpretations of what bits mean

 “I store a 4-byte signed integer”, “I store a 1-byte integer which is an ASCII 
code”

 When using a high-level language like C, we say what data means
 “I declare x as an int and y as an unsigned  char”

 But when writing assembly code, we don’t have a notion of “data types”
 The ISA provides many instructions that operate on all types of data 
 It’s our role to use the instructions that correspond to the data 

 e.g., if you used the “signed multiplication” instruction on unsigned 
numbers, you’ll just get a wrong results but no warning/error

 This is one of the difficulties of assembly programming
 And 2’s complement appears “magic”...



The Magic of 2’s Complement
 Say I have two 1-byte values, A3 and 17, and I add them together:
  A316 + 1716 = BA16

 If my interpretation of the numbers is unsigned:
 A316 = 16310

 1716 = 2310

 BA16 = 18610

 and indeed, 16310 + 2310 = 18610

 If my interpretation of the numbers is signed:
 A316 = -9310

 1716 = 2310

 BA16 = -7010

 and indeed, -9310 + 2310 = -7010

 So, as long as I stick to my interpretation, the binary addition does 
the right thing assuming 2’s complement notation!!!
 Same thing for the subtraction



Conclusion

 We’ll come back to numbers and arithmetic 
when we use arithmetic assembly 
instructions


