Background/Review on Numbers and

 Computers (lecture)
ICS312
 Machine-Level and Systems Programming

Numbers and Computers

- Throughout this course we will
\square use binary and hexadecimal representations of numbers
\square need to be aware of the ways in which the computer stores numbers
- So let us go through a simple review before we start learning how to write assembly code
\square Numbers in different bases
\square Number representation in computers and basic arithmetic
- More to come later on arithmetic

Numbers and bases

- We are used to thinking of numbers as written in decimal, that is, in base 10

$$
\begin{array}{ll}
25 & =2^{*} 10^{1}+5^{*} 10^{0} \\
136 & =1^{*} 10^{2}+3^{*} 10^{1}+6^{*} 10^{0}
\end{array}
$$

- Each number is decomposed into a sum of terms
- Each term is the product of two factors
\square A digit (from 0 to 9)
\square The base (10) raised to a power corresponding to the digit's position in the number
$136=\ldots+0^{*} 10^{4}+0^{*} 10^{3}+1^{*} 10^{2}+3^{*} 10^{1}+6^{*} 10^{0}$
$=\ldots 00000136$
\square We typically don't write (an infinite number of) leading 0's

Numbers and Bases

- Any number can be written in base b, using b digits
\square If $b=10$ we have "decimal" with 10 digits [0-9]
\square If $b=2$ we have "binary" with 2 digits $[0,1]$, which are also called bits
- If $b=8$ we have "octal" with 8 digits [0-7]
\square If $b=16$ we have "hexadecimal" with 16 digits $[0-9, A, B, C, D, E, F]$
- Computers use binary internally
\square It's easy to associate two states to a current
- Low voltage = 0 , high voltage = 1
- Associating 16 states to a current is more complicated and error-prone
- However, binary is cumbersome
\square The lower the base the longer the numbers!
- It's really difficult for a human to remember binary
- Therefore we, as humans, like to use higher bases
- Bases that are powers of 2 make for easy translation to binary, and thus are particularly useful, and in particular hexadecimal

Binary Numbers

- Counting in binary:

0_{2}	0_{10}
1_{2}	1_{10}
10_{2}	2_{10}
11_{2}	3_{10}
100_{2}	4_{10}
101_{2}	5_{10}
110_{2}	6_{10}
111_{2}	7_{10}
1000_{2}	8_{10}

- A binary number with d bits corresponds to integer values between 0 and $2^{\mathrm{d}}-1$

$$
\sum_{k=0}^{d-1} 2^{k}=2^{d}-1
$$

- Example:
\square An integer stored in 8 bits has values between 0 and 255
- 128+64+32+16+8+4+ $2+1=255$

Converting from Binary to Decimal

- We denote by $\mathrm{XXXX}{ }_{2}$ a binary representation of a number and by XXXX_{10} a decimal representation
- Converting from binary to decimal is straightforward:

$$
\begin{aligned}
&{10010110_{2}}=1^{*} 2^{7}+1^{*} 2^{4}+1^{*} 2^{2}+1^{*} 2^{1} \\
&=1^{*} 128+1^{* 16}+1^{*} 4+1^{*} 2 \\
&=150_{10}
\end{aligned}
$$

- The rightmost bit of a binary number is called the least significant bit
- The leftmost non-zero bit of a binary number is called the most significant bit
- If the least significant bit is 0 , then the number is even, otherwise it's odd

Converting from Decimal to Binary

- The conversion proceeds by a series of integer divisions by 2 , and by recording the remainder of the division
Integer division a / b : $\mathrm{a}=\mathrm{b}^{*} \mathrm{q}+$ remainder, where all are integers
- Example: converting 37_{10} into binary
- Divide 37 by 2: $37=2^{*} 18+1$
\square Divide 18 by 2: $18=2 * 9+0$
\square Divide 9 by 2: $9=2 * 4+1$
\square Divide 4 by 2: $4=2^{*} 2+0$
\square Divide 2 by 2: $2=2^{*} 1+0$
\square Divide 1 by 2: $1=2^{*} 0+1$
- Result: 100101 ${ }_{2}$
- The least significant bit is computed first
- The most significant bit is computed last
- Note that if we continue dividing, we get extraneous leading 0s
- ... 00000100101_{2}

Binary Arithmetic

- Adding a 0 to the right of a binary number multiplies it by 2

$$
\begin{aligned}
& \square 10101_{2}=16_{10}+4_{10}+1_{10}=21_{10} \\
& 101010_{2}=32_{10}+8_{10}+2_{10}=42_{10}
\end{aligned}
$$

- Adding two binary numbers is just like adding decimal numbers: using a carry

With no previous carry				With a previous carry			
0	0	1	1	0	0	1	1
+0	+1	+0	+1	+0	+1	+0	+1
$=0$	$=1$	$=1$	$=0$	$=1$	$=0$	$=0$	$=1$
					c	c	c

Binary Addition

$$
\begin{array}{rlr}
c c c c & & 9_{10} \\
1001 & + & 15_{10} \\
+ & 1111 & =24_{10}
\end{array}
$$

$$
\begin{array}{r}
c \\
10100110 \\
+\quad \begin{array}{r}
c \\
+1000011
\end{array} \\
+\quad 101101001
\end{array}
$$

166_{10}
$+195_{10}$
$=361_{10}$

Counting in Hexadecimal

$0_{16}=0_{10} \quad A_{16}=10_{10} \quad 14_{16}=20_{10} \quad 1 \mathrm{E}_{16}=30_{10}$
$1_{16}=1_{10}$
$2_{16}=2_{10}$
$3_{16}=3_{10}$
$4_{16}=4_{10}$
$5_{16}=5_{10}$
$6_{16}=6_{10}$
$\mathrm{B}_{16}=11_{10}$
$15_{16}=21_{10}$
$1 F_{16}=31_{10}$
$\mathrm{C}_{16}=12_{10} \quad 16_{16}=22_{10} \quad 20_{16}=32_{10}$
$D_{16}=13_{10}$
$17_{16}=23_{10} \quad 21_{16}=33_{10}$
$\mathrm{E}_{16}=14_{10} \quad 18_{16}=24_{10} \quad 22_{16}=34_{10}$
$\mathrm{F}_{16}=15_{10}$
$19_{16}=25_{10}$
$23_{16}=35_{10}$
$10_{16}=16_{10}$
$1 \mathrm{~A}_{16}=26_{10}$
$24_{16}=36_{10}$
$7_{16}=7_{10}$
$8_{16}=8_{10}$
$9_{16}=9_{10}$
$11_{16}=17_{10}$
$1 \mathrm{~B}_{16}=27_{10}$
$25_{16}=37_{10}$
$12_{16}=18_{10}$
$1 \mathrm{C}_{16}=28_{10}$
$26_{16}=38_{10}$
$13_{16}=19_{10} \quad 1 D_{16}=29_{10} \quad 27_{16}=39_{10}$

Converting from hex to decimal

- This is again straightforward
$A 203 D E_{16}=10^{*} 16^{5}+$

$$
\begin{aligned}
& 2^{*} 16^{4}+ \\
& 3^{*} 16^{2}+ \\
& 13^{*} 16^{1}+ \\
& 14^{*} 16^{0}=10,617,822_{10}
\end{aligned}
$$

Converting from decimal to hex

- Use the same idea as for binary
- Example: convert 1237_{10}
- $1237=77^{*} 16+5$
$\square 77=4 * 16+13$
$\square 4=0 * 16+4$
\square Result: 4D5 ${ }_{16}$

Hexadecimal addition

$$
\begin{aligned}
& \text { C } \\
& \text { A } 23 \mathrm{~F} \\
& \text { + 3D13 } \\
& \text { = DF5 } 2 \\
& \text { C C C C } \\
& \text { D1FF } \\
& \text { + A4DF } \\
& \text { = } 176 \mathrm{DE} \\
& 4_{1535}^{10} \\
& +15635_{10} \\
& =57170_{10} \\
& 53759_{10} \\
& +42207_{10} \\
& =95965_{10}
\end{aligned}
$$

Why is hexadecimal useful?

- We need to think in binary because computers operate on binary quantities
- But binary is cumbersome

■ However, hexadecimal makes it possible to represent binary quantities in a compact form

- Conversions back and forth from binary to hex are straightforward
\square Just convert hex digits into 4-bit numbers
\square Just convert 4-bit binary numbers into hex digits

Converting from hex to binary

- Consider A43FE2 ${ }_{16}$
- We convert each hex digit into a 4-bit binary number:
- $\mathrm{A}_{16}: 1010_{2}$
- $4_{16}: 0_{0100_{2}}$
- $3_{16}: 0011_{2}$
- $\mathrm{F}_{16}: 1111_{2}$
- $\mathrm{E}_{16}: 1110_{2}$
- $2_{16}: 0010_{2}$
- We "glue" them all together:
\square A43FE2 $_{16}=101001000011111111100010_{2}$
- Note that:
\square You must have the leading 0's for the 4-bit numbers, which is what a computer would store anyway
\square It all works because $F_{16}=15_{10}$, and a 4-bit number has maximum value of $2^{4}-1=15_{10}$

Converting from binary to hex

■ Let's convert 1001010101111_{2} into hex

- We split it in 4-bit numbers, which we convert separately
- First we add leading 0's to have a number of bits that's a multiple of 4: 0001001010101111
- Then we convert
$\square 0001_{2}: 1_{16}$
$\square 0010_{2}: 2_{16}$
$-1010_{2}: \mathrm{A}_{16}$
$\square 1111_{2}: F_{16}$
- And the result: $1^{1001010101111_{2}}=12 \mathrm{AF}_{16}$

Integer representation

- A computer needs to store integers in memory/registers
- Stored using different numbers of bytes (1 byte $=8$ bits):
\square 1-byte: "byte"
- 2-byte: "half word" (or "word")
- 4-byte: "word" (or "double word")
- 8-byte: "double word" (or "paragraph", or "quadword")
\square Different computers have used different word sizes, so it's always a bit confusing to just talk about a "word" without any context
- Regardless of the number of bytes, integers are stored in binary
- Integers come in two flavors:
\square Unsigned: values from 0 to $2^{\text {b }}-1$
\square Signed: negatives values, with about the same number of negative values as the number of positive values
- You can actually declare variables as signed or unsigned in some high-level programming languages, like C

Sign-Magnitude

- Storing unsigned integers is easy: just store the bits of the integer's binary representation
- Storing signed integer raises a question: how to store the sign?
- One approach is called sign-magnitude: reserve the leftmost bit to represent the sign

$$
\begin{aligned}
& 00100101 \text { denotes }+0100101_{2} \\
& 10100101 \text { denotes }-0100101_{2}
\end{aligned}
$$

- It's very easy to negate a number: just flip the leftmost bit
- Unfortunately, sign-magnitude complicates the logic of the CPU (i.e., ICS331-type stuff)
\square There are two representations for zero: 10000000 and 00000000
\square Some operations are thus more complicated to implement in hardware

One's complement

- Another idea to store a negative number is to take the complement (i.e., flip all bits) of its positive counterpart
- Example: I want to store integer -87
$\square 87_{10}=01010111_{2}$
- $-87_{10}=10101000$
- Simple, but still two representations for zero: 00000000 and 11111111
- It turns out that computer logic to deal with 1 's complement arithmetic is complicated
- Note: it's easy to compute the 1's complement of a number represented in hexadecimal
\square let's consider: 57_{16}
- Subtract each hex digit from F: F-5=A, F-7=8
$\square 1$'s complement of 57_{16} is $\mathrm{A} 8_{16}$

Two's complement

- While sign-magnitude and 1's complement were used in older computers, nowadays all computers use 2's complement
- Computing the 2's complement is in two steps:
\square Compute the 1's complement of the positive number
\square Add 1 to the result
\square The gives the representation of the negative number
- Example: Let's represent -87_{10}
$\square 87_{10}=01010111_{2}$ or 57_{16}
- 1's complement: 10101000 or A8
- Add one: 10101001 or A9
- Let's invert again
- We start with A9
- Invert: 56
\square Add one: 57, which represents 87_{10}

Two's complement

- Note that when adding 1 in the second step a carry may be generated but is ignored!
\square Difference between arithmetic and computer arithmetic
- When adding two X-bit quantities in a computer one always obtain another X-bit quantity ($\mathrm{X}=8,16,32, \ldots$)
■ Example: Computing 2's complement of 00000000
\square Take the invert: 11111111
\square Add one: 00000000 with a carry generated!
- Should be a 9-bit quantity: 100000000
- Therefore 0 has only one representation: a signed byte can store values from -128 to +127 ($128<0$ values, and $128>=0$ values)
- It turns out that 2's complement makes for very simple arithmetic logic when building ALUs
- From now on we always assumed 2's complement representation
- Important: The leftmost bit still indicates the sign of the number (0: positive, 1: negative)
\square In hex, if the left-most "digit" is $8,9, A, B, C, D, E$, or F, then the number is negative, otherwise it is positive

Ranges of Numbers

- For 1-byte values
\square Unsigned
- Smallest value: 00
(010)
- Largest value: FF (25510)
\square Signed
- Smallest value: 80
(-12810)
- Largest value: 7F
(+127 ${ }_{10}$)
- For 2-byte values
\square Unsigned
- Smallest value: 0000
(010)
- Largest value: FFFF
$\left(65,535_{10}\right)$
\square Signed
- Smallest value: 8000
$\left(-32,768_{10}\right)$
- Largest value: 7FFF (+32,767 ${ }_{10}$)
- etc.

The Task of the (Assembly) Programmer

- The computer simply stores data as bits
- The computer internally has no idea what the data means
\square It doesn't know whether numbers are signed or unsigned
- We, as programmers have precise interpretations of what bits mean
\square "I store a 4-byte signed integer", "I store a 1-byte integer which is an ASCII code"
- When using a high-level language like C, we say what data means
\square "I declare x as an int and y as an unsigned char"
- But when writing assembly code, we don't have a notion of "data types"
- The ISA provides many instructions that operate on all types of data
- It's our role to use the instructions that correspond to the data
\square e.g., if you used the "signed multiplication" instruction on unsigned numbers, you'll just get a wrong results but no warning/error
- This is one of the difficulties of assembly programming
- And 2's complement appears "magic"...

The Magic of 2's Complement

- Say I have two 1-byte values, A3 and 17, and I add them together:

$$
A 3_{16}+17_{16}=B A_{16}
$$

- If my interpretation of the numbers is unsigned:
$\square \mathrm{A} 3_{16}=163_{10}$
- $17_{16}=23_{10}$
$\square B A_{16}=186_{10}$
\square and indeed, $163_{10}+23_{10}=186_{10}$
- If my interpretation of the numbers is signed:
- $\mathrm{A} 3_{16}=-93_{10}$
- $17_{16}=23_{10}$
$\square \mathrm{BA}_{16}=-70_{10}$
\square and indeed, $-93_{10}+23_{10}=-70_{10}$
- So, as long as I stick to my interpretation, the binary addition does the right thing assuming 2's complement notation!!!
\square Same thing for the subtraction

Conclusion

- We'll come back to numbers and arithmetic when we use arithmetic assembly instructions

