Background/Review on Numbers and Computers (lecture)

ICS312 Machine-Level and Systems Programming

Henri Casanova (henric@hawaii.edu)

Numbers and Computers

- Throughout this course we will
 - use binary and hexadecimal representations of numbers
 - need to be aware of the ways in which the computer stores numbers
- So let us go through a simple review before we start learning how to write assembly code
 - Numbers in different bases
 - Number representation in computers and basic arithmetic
 - More to come later on arithmetic

Numbers and bases

We are used to thinking of numbers as written in decimal, that is, in base 10

$$25 = 2^*10^1 + 5^*10^0$$

 $136 = 1^{*}10^{2} + 3^{*}10^{1} + 6^{*}10^{0}$

Each number is decomposed into a sum of termsEach term is the product of two factors

- □ A digit (from 0 to 9)
- The base (10) raised to a power corresponding to the digit's position in the number

$$136 = \dots + 0^{*}10^{4} + 0^{*}10^{3} + 1^{*}10^{2} + 3^{*}10^{1} + 6^{*}10^{0}$$

= ...00000136

□ We typically don't write (an infinite number of) leading 0's

Numbers and Bases

- Any number can be written in base b, using b digits
 - □ If b = 10 we have "decimal" with 10 digits [0-9]
 - □ If b = 2 we have "binary" with 2 digits [0,1], which are also called bits
 - □ If b = 8 we have "octal" with 8 digits [0-7]
 - □ If b = 16 we have "hexadecimal" with 16 digits [0-9,A,B,C,D,E,F]
- Computers use binary internally
 - It's easy to associate two states to a current
 - Low voltage = 0, high voltage = 1
 - Associating 16 states to a current is more complicated and error-prone
- However, binary is cumbersome
 - The lower the base the longer the numbers!
 - It's really difficult for a human to remember binary
- Therefore we, as humans, like to use higher bases
- Bases that are powers of 2 make for easy translation to binary, and thus are particularly useful, and in particular hexadecimal

Binary Numbers

Counting in binary:

02	0 ₁₀
1 ₂	1 ₁₀
10 ₂	2 ₁₀
11 ₂	3 ₁₀
100 ₂	4 ₁₀
101 ₂	5 ₁₀
110 ₂	6 ₁₀
111 ₂	7 ₁₀
1000 ₂	8 ₁₀

A binary number with d bits corresponds to integer values between 0 and 2^d-1

$$\sum_{k=0}^{d-1} 2^k = 2^d - 1$$

• Example:

- An integer stored in 8 bits has values between 0 and 255
- 128+64+32+16+8+4+
 2+1 = 255

Converting from Binary to Decimal

- We denote by XXXX₂ a binary representation of a number and by XXXX₁₀ a decimal representation
- Converting from binary to decimal is straightforward: $10010110_2 = 1*2^7 + 1*2^4 + 1*2^2 + 1*2^1$

= 1*128 + 1*16 + 1*4 + 1*2 = 150₁₀

- The rightmost bit of a binary number is called the least significant bit
- The leftmost non-zero bit of a binary number is called the most significant bit
- If the least significant bit is 0, then the number is even, otherwise it's odd

Converting from Decimal to Binary

- The conversion proceeds by a series of integer divisions by 2, and by recording the remainder of the division
 - □ Integer division a/b: $a = b^* q + remainder$, where all are integers
- Example: converting 37₁₀ into binary
 - Divide 37 by 2: 37 = 2*18 + 1
 - □ Divide 18 by 2: 18 = 2*9 + 0
 - □ Divide 9 by 2: 9 = 2*4 + 1
 - Divide 4 by 2: $4 = 2^2 + 0$
 - □ Divide 2 by 2: 2 = 2*1 + 0
 - □ Divide 1 by 2: 1 = 2*0 + 1
 - □ Result: 100101₂
- The least significant bit is computed first
- The most significant bit is computed last
- Note that if we continue dividing, we get extraneous leading 0s
 ...00000100101₂

Binary Arithmetic

- Adding a 0 to the right of a binary number multiplies it by 2
 - $\Box 10101_2 = 16_{10} + 4_{10} + 1_{10} = 21_{10}$
 - $\square 101010_2 = 32_{10} + 8_{10} + 2_{10} = 42_{10}$
- Adding two binary numbers is just like adding decimal numbers: using a carry

With	no pre	evious	carry	With	a pre	vious c	arry
0	0	1	1	0	0	1	1
+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
= 0	= 1	= 1	= 0	= 1	= 0	= 0	= 1
			С		С	С	С

Binary Addition

+

 $\begin{array}{c} \mathbf{c} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{$

 $\begin{array}{cccc} & c & c & c \\ & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ & = & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ \end{array}$

Counting in Hexadecimal

0 ₁₆ =0 ₁₀	A ₁₆ =10 ₁₀	14 ₁₆ =20 ₁₀	1E ₁₆ =30 ₁₀
1 ₁₆ =1 ₁₀	B ₁₆ =11 ₁₀	15 ₁₆ =21 ₁₀	1F ₁₆ =31 ₁₀
2 ₁₆ =2 ₁₀	C ₁₆ =12 ₁₀	16 ₁₆ =22 ₁₀	20 ₁₆ =32 ₁₀
3 ₁₆ =3 ₁₀	D ₁₆ =13 ₁₀	17 ₁₆ =23 ₁₀	21 ₁₆ =33 ₁₀
4 ₁₆ =4 ₁₀	E ₁₆ =14 ₁₀	18 ₁₆ =24 ₁₀	22 ₁₆ =34 ₁₀
5 ₁₆ =5 ₁₀	F ₁₆ =15 ₁₀	19 ₁₆ =25 ₁₀	23 ₁₆ =35 ₁₀
6 ₁₆ =6 ₁₀	10 ₁₆ =16 ₁₀	1A ₁₆ =26 ₁₀	24 ₁₆ =36 ₁₀
7 ₁₆ =7 ₁₀	11 ₁₆ =17 ₁₀	1B ₁₆ =27 ₁₀	25 ₁₆ =37 ₁₀
8 ₁₆ =8 ₁₀	12 ₁₆ =18 ₁₀	1C ₁₆ =28 ₁₀	26 ₁₆ =38 ₁₀
9 ₁₆ =9 ₁₀	13 ₁₆ =19 ₁₀	1D ₁₆ =29 ₁₀	27 ₁₆ =39 ₁₀

Converting from hex to decimal

This is again straightforward

```
A203DE<sub>16</sub> = 10*16^5 +

2*16^4 +

3*16^2 +

13*16^1 +

14*16^0 = 10,617,822_{10}
```

Converting from decimal to hex

- Use the same idea as for binary
 Example: convert 1237₁₀
 - □ 1237 = 77*16 + <mark>5</mark>
 - □ 77 = 4*16 + <mark>13</mark>
 - $\Box 4 = 0*16 + 4$

□ Result: 4D5₁₆

Hexadecimal addition

- A 2 3 F + 3 D 1 3 = D F 5 2 41535_{10} + 15635₁₀ = 57170₁₀
- $\begin{array}{cccc} c & c & c & c & c \\ D & 1 & F & 53759_{10} \\ + & A & 4 & D & F \\ = & 1 & 7 & 6 & D & E \end{array} \qquad \begin{array}{c} + & 42207_{10} \\ = & 95965_{10} \end{array}$

Why is hexadecimal useful?

- We need to think in binary because computers operate on binary quantities
- But binary is cumbersome
- However, hexadecimal makes it possible to represent binary quantities in a compact form
- Conversions back and forth from binary to hex are straightforward
 - Just convert hex digits into 4-bit numbers
 - Just convert 4-bit binary numbers into hex digits

Converting from hex to binary

- Consider A43FE2₁₆
- We convert each hex digit into a 4-bit binary number:
 - □ A₁₆: 1010₂
 - □ 4₁₆: 0100₂
 - \Box 3₁₆: 0011₂
 - □ F₁₆: 1111₂
 - □ E₁₆: 1110₂
 - \Box 2₁₆: 0010₂
- We "glue" them all together:
 - A43FE2₁₆ = 10100100001111111100010₂
- Note that:
 - You must have the leading 0's for the 4-bit numbers, which is what a computer would store anyway
 - It all works because $F_{16} = 15_{10}$, and a 4-bit number has maximum value of 2^4 -1 = 15_{10}

Converting from binary to hex

- Let's convert 1001010101111₂ into hex
- We split it in 4-bit numbers, which we convert separately
- First we add leading 0's to have a number of bits that's a multiple of 4:

0001 0010 1010 1111

- Then we convert
 - \Box 0001₂: 1₁₆
 - \Box 0010₂: 2₁₆
 - \Box 1010₂: A₁₆
 - \Box 1111₂: F₁₆

And the result: 1001010101111₂ = 12AF₁₆

Integer representation

- A computer needs to store integers in memory/registers
- Stored using different numbers of bytes (1 byte = 8 bits):
 - 1-byte: "byte"
 - 2-byte: "half word" (or "word")
 - □ 4-byte: "word" (or "double word")
 - □ 8-byte: "double word" (or "paragraph", or "quadword")
 - Different computers have used different word sizes, so it's always a bit confusing to just talk about a "word" without any context
- Regardless of the number of bytes, integers are stored in binary
- Integers come in two flavors:
 - Unsigned: values from 0 to 2^b-1
 - Signed: negatives values, with about the same number of negative values as the number of positive values
- You can actually declare variables as signed or unsigned in some high-level programming languages, like C

Sign-Magnitude

- Storing unsigned integers is easy: just store the bits of the integer's binary representation
- Storing signed integer raises a question: how to store the sign?
- One approach is called sign-magnitude: reserve the leftmost bit to represent the sign

00100101 denotes + 0100101₂

10100101 denotes - 0100101₂

- It's very easy to negate a number: just flip the leftmost bit
- Unfortunately, sign-magnitude complicates the logic of the CPU (i.e., ICS331-type stuff)
 - There are two representations for zero: 10000000 and 00000000
 - Some operations are thus more complicated to implement in hardware

One's complement

- Another idea to store a negative number is to take the complement (i.e., flip all bits) of its positive counterpart
- Example: I want to store integer -87
 - \square 87₁₀ = 01010111₂
 - □ -87₁₀ = 10101000
- Simple, but still two representations for zero: 00000000 and 11111111
- It turns out that computer logic to deal with 1's complement arithmetic is complicated
- Note: it's easy to compute the 1's complement of a number represented in hexadecimal
 - let's consider: 57₁₆
 - □ Subtract each hex digit from F: F-5=A, F-7=8
 - \square 1's complement of 57₁₆ is A8₁₆

Two's complement

- While sign-magnitude and 1's complement were used in older computers, nowadays all computers use 2's complement
- Computing the 2's complement is in **two steps**:
 - Compute the 1's complement of the positive number
 - Add 1 to the result
 - □ The gives the representation of the negative number
- Example: Let's represent -87₁₀
 - \square 87₁₀ = 01010111₂ or 57₁₆
 - □ 1's complement: 10101000 or A8
 - Add one: 10101001 or A9
- Let's invert again
 - We start with A9
 - □ Invert: 56
 - \Box Add one: 57, which represents 87₁₀

Two's complement

- Note that when adding 1 in the second step a carry may be generated but is ignored!
 - Difference between arithmetic and computer arithmetic
 - When adding two X-bit quantities in a computer one always obtain another X-bit quantity (X=8, 16, 32, ...)
- Example: Computing 2's complement of 00000000
 - □ Take the invert: 11111111
 - Add one: 0000000 with a carry generated!
 - Should be a 9-bit quantity: 10000000
- Therefore 0 has only one representation: a signed byte can store values from -128 to +127 (128 <0 values, and 128 >=0 values)
- It turns out that 2's complement makes for very simple arithmetic logic when building ALUs
- From now on we always assumed 2's complement representation
- Important: The leftmost bit still indicates the sign of the number (0: positive, 1: negative)
 - In hex, if the left-most "digit" is 8, 9, A, B, C, D, E, or F, then the number is negative, otherwise it is positive

Ranges of Numbers

For 1-byte values	
Unsigned	
Smallest value: 00	(0 ₁₀)
Largest value: FF	(25510)
Signed	
Smallest value: 80	(-128 ₁₀)
Largest value: 7F	(+127 ₁₀)
For 2-byte values	
Unsigned	
Smallest value: 0000	(0 ₁₀)
Largest value: FFFF	(65,53510)
Signed	
Smallest value: 8000	(-32,76810)
Largest value: 7FFF	(+32,767 ₁₀)
etc.	

The Task of the (Assembly) Programmer

- The computer simply stores data as bits
- The computer internally has no idea what the data means
 It doesn't know whether numbers are signed or unsigned
- We, as programmers have precise interpretations of what bits mean
 - "I store a 4-byte signed integer", "I store a 1-byte integer which is an ASCII code"
- When using a high-level language like C, we say what data means
 "I declare x as an int and y as an unsigned char"
- But when writing assembly code, we don't have a notion of "data types"
- The ISA provides many instructions that operate on all types of data
- It's our role to use the instructions that correspond to the data
 - e.g., if you used the "signed multiplication" instruction on unsigned numbers, you'll just get a wrong results but no warning/error
- This is one of the difficulties of assembly programming
- And 2's complement appears "magic"...

The Magic of 2's Complement

- Say I have two 1-byte values, A3 and 17, and I add them together: A3₁₆ + 17₁₆ = BA₁₆
- If my interpretation of the numbers is unsigned:
 - \square A3₁₆ = 163₁₀
 - \square 17₁₆ = 23₁₀
 - \square BA₁₆ = 186₁₀
 - \Box and indeed, 163₁₀ + 23₁₀ = 186₁₀
- If my interpretation of the numbers is signed:
 - \square A3₁₆ = -93₁₀
 - \square 17₁₆ = 23₁₀
 - \square BA₁₆ = -70₁₀
 - □ and indeed, $-93_{10} + 23_{10} = -70_{10}$
- So, as long as I stick to my interpretation, the binary addition does the right thing assuming 2's complement notation!!!
 - Same thing for the subtraction

Conclusion

We'll come back to numbers and arithmetic when we use arithmetic assembly instructions