Numbers and Computers: Examples and Sample Problemsm

ICS312 Machine-Level and Systems Programming

Henri Casanova (henric@hawaii.edu)

Conversions

• What is 52₁₀ in binary?

52₁₀ in binary

- Systematic method:
 - □ 52 = 26*2 + 0
 - \square 26 = 13*2 + 0
 - □ 13 = 6*2 + 1
 - \Box 6 = 3*2 + 0
 - □ 3 = 1*2 + 1
 - □ 1 = 0*2 + 1
 - Answer: 110100
- Intuitive method (for "small" numbers)
 - □ 52 is lower than 64, so it's 32 + some other powers of 2
 - □ 32 + 16 is 48, so 52 is 32 + 16 + some other powers of 2
 - \Box 52 48 = 4, so we have: 52 = 32 + 16 + 4
 - □ Therefore: 110100
 - We have 64, 32, not 16, not 8, 4, not 2, not 1

Conversions

What is 2049₁₀ in binary?

2049₁₀ in binary

- The systematic method is really long here
 simple though, but tedious
- It's easier to see that 2049₁₀ is 2048₁₀ + 1₁₀
 - \square 2048₁₀ is 2¹¹ = 100000000002
 - \Box 1 is 2⁰ = 1₂

Therefore

 $\square 249_{10} = 1000000001_2$

In general, one likes to find our "nearby" powers of 2

Conversions

What is 1021₁₀ in binary?

1021₁₀ in binary

- This is "close to" 1024₁₀
- We know that 1024₁₀ is 100000000₂
- More useful: 1023₁₀ is 1111111112
- So we can "count backwards"
- 111111110₂ comes before 111111111₂, and therefore it is 1022₁₀
- 111111101₂ comes before 11111110₂, and therefore it is 1021₁₀
- Answer: 111111101₂

Conversions

■ What is B8₁₆ in binary?

B8₁₆ in binary

Just "glue" the 2 4-bit conversions together

Answer: 10111000

How do I know that B₁₆ = 1011₂ ?

Just go back to decimal

■ 11₁₀ = 1011₂

Conversions

- What is 51₁₀ in hexadecimal?
- What is 0110₂ in hexadecimal?

What is 51₁₀ in hexadecimal?

□ Answer: 33

What is 0110₂ in hexadecimal?

$$0110_2 = 6_{10} = 6_{16}$$

□ Answer: 6

More Conversions

- What is 123₁₀ in binary?
- What is F3EA₁₆ in binary?
- What is 111₁₀ in hexadecimal?
- What is 100110₂ in hexadecimal?

```
Conversions:
\square What is 123<sub>10</sub> in binary?
           1111011 (127 - 4)
\Box What is F3EA<sub>16</sub> in binary?
            1111001111101010
\square What is 111<sub>10</sub> in hexadecimal?
           6F
                          (112 - 1)
\square What is 100110<sub>2</sub> in hexadecimal?
           26
Always try to find simple "tricks" if you can
```

Binary addition

What is: 10101101 + 11001011 ?

What is: 10101101 + 11001011?

Hex addition

■ What is: A5F + E32 ?

What is: A5F + E32 ?

	С	С
	Z	45F
+	Ε	E32
=	18	391

- Small "trick": adding F to a digit takes that digit 1 lower and generates a carry
 - F + 7 = 6 and a carry
 - F + E = D and a carry

Another binary addition

What is 1010111 + 1110111?

What is 1010111 + 1110111?

CCC CCC

1010111

- + 1110111
- = 11001110

Another hex addition

What is AF3F + EE8D?

What is AF3F + EE8D?

CC AF3F

- + EE8D
- = 19DCC

Two's complement

What is the 2's complement 2-byte representation of -153₁₀ in hexadecimal?

- What is the 2's complement representation of -153₁₀ in hexadecimal?
 - 153₁₀ = 0099₁₆
 - complement: FF66
 - add 1: FF67

Two's complement

What is the decimal value of FF4A, a 2-byte numbers stored in 2's complement fashion?

- What is the decimal value of FF4A, a 2-byte numbers stored in 2's complement fashion?
 - FF4A = 1....₂
 - Therefore it represents a negative number, let's invert it
 - Invert: 00B5
 - Add 1: 00B6 = B6
 - B6₁₆ = 11*16 + 6 = 176 + 6 = 182₁₀
 - Therefore, in 2's complement notation, FF4A is -182₁₀

Two's complement

What is the 2's complement 1-byte representation of -81₁₀ in hexadecimal?

- What is the 2's complement 1-byte representation of -81₁₀ in hexadecimal?
 - $\square 81_{10} = 51_{16}$
 - complement: AE
 - add 1: AF

Two's complement

What is the decimal value of 76h, a 1-byte number stored in 2's complement fashion?

- What is the decimal value of 76, a 1-byte numbers stored in 2's complement fashion?
 - It's a positive number, so 76 is simply the hex value of the integer
 - □ Answer: $7*16^1 + 6*16^0 = 118_{10}$

Ranges of numbers

- What is the largest unsigned decimal number that can be encoded with 8 bits?
- What is the smallest unsigned decimal number that can be encoded with 8 bits?
- What is the largest signed decimal number that can be encoded with 8 bits?
- What is the smallest signed decimal number that can be encoded with 8 bits?
- What is the 2's complement representation of -1₁₀ with 32 bits?

- What is the largest unsigned decimal number that can be encoded with 8 bits?
 - □ 255 (i.e., FF in 2's complement representation)
- What is the smallest unsigned decimal number that can be encoded with 8 bits?
 - □ 0 (i.e., 00 in 2's complement representation)
- What is the largest signed decimal number that can be encoded with 8 bits?
 - Largest that isn't negative: 7F in 2's complement representation = 127₁₀
- What is the smallest signed decimal number that can be encoded with 8 bits?
 - Smallest that isn't positive: 80 in 2's complement representation = -128_{10}
- What is the 2's complement representation of -1₁₀ with 32 bits?
 - 1 = 00000001; complement: FFFFFFE; add one: FFFFFFF