Numbers and Computers: Examples and Sample Problemsm

ICS312
 Machine-Level and Systems Programming

Conversions

- What is 52_{10} in binary?

52_{10} in binary

- Systematic method:
- $52=26^{*} 2+0$
- $26=13^{*} 2+0$
- $13=6 * 2+1$
- $6=3^{*} 2+0$
- $3=1 * 2+1$
- $1=0 * 2+1$
- Answer: 110100
- Intuitive method (for "small" numbers)
$\square 52$ is lower than 64, so it's $32+$ some other powers of 2
- $32+16$ is 48 , so 52 is $32+16+$ some other powers of 2
- $52-48=4$, so we have: $52=32+16+4$
\square Therefore: 110100
- We have 64,32 , not 16 , not 8,4 , not 2 , not 1

Conversions

- What is 2049_{10} in binary?

204910 in binary

- The systematic method is really long here
\square simple though, but tedious
- It's easier to see that 2049_{10} is $2048_{10}+1_{10}$
$\square 2048{ }_{10}$ is $2^{11}=100000000000_{2}$
$\square 1$ is $2^{0}=1_{2}$
- Therefore
$\square 249_{10}=100000000001_{2}$
- In general, one likes to find our "nearby" powers of 2

Conversions

- What is 1021_{10} in binary?

1021_{10} in binary

- This is "close to" 1024_{10}
- We know that 1024_{10} is 1000000000_{2}
- More useful: $1^{1023_{10}}$ is 111111111_{2}
- So we can "count backwards"
- 111111110_{2} comes before 111111111_{2}, and therefore it is 1022_{10}
- 111111101_{2} comes before 111111110_{2}, and therefore it is 1021_{10}
- Answer: 111111101_{2}

Conversions

- What is B_{16} in binary?

B816 in binary

- Just "glue" the 24 -bit conversions together
$\square B_{16}=1011_{2}, 8_{16}=1000_{2}$
\square Answer: 10111000
- How do I know that $\mathrm{B}_{16}=1011_{2}$?
\square Just go back to decimal
- $B_{16}=11_{10}$
- $11_{10}=1011_{2}$

Conversions

- What is 51_{10} in hexadecimal?

■ What is 0110_{2} in hexadecimal?

Solutions

- What is 51_{10} in hexadecimal?
$\square 51=3 * 16+3$
\square Answer: 33
- What is 0110_{2} in hexadecimal?
$\square 0110_{2}=6{ }_{10}=6{ }_{16}$
\square Answer: 6

More Conversions

- What is 123_{10} in binary?
- What is F3EA $_{16}$ in binary?
- What is 111_{10} in hexadecimal?
- What is 100110_{2} in hexadecimal?

Solutions

- Conversions:
\square What is 123_{10} in binary?

$$
1111011 \quad(127-4)
$$

\square What is F3EA $_{16}$ in binary?

1111001111101010

\square What is 111_{10} in hexadecimal?

$$
6 F
$$

(112-1)
\square What is 100110_{2} in hexadecimal?

$$
26
$$

Always try to find simple "tricks" if you can

Binary addition

- What is: $10101101+11001011$?

Solution

- What is: $10101101+11001011$?

$$
\begin{gathered}
c \quad c c c c \\
10101101 \\
+\quad 11001011 \\
=\quad 101111000
\end{gathered}
$$

Hex addition

- What is: A5F + E32 ?

Solution

■ What is: A5F + E32 ?

	cA5F +\quad E32
$=$	1891

- Small "trick": adding F to a digit takes that digit 1 lower and generates a carry
- $F+7=6$ and a carry
- $F+E=D$ and a carry

Another binary addition

- What is $1010111+1110111$?

Solution

- What is $1010111+1110111$?

CCC CCC
1010111
$+\quad 1110111$
$=11001110$

Another hex addition

- What is AF3F + EE8D?

Solution

- What is AF3F + EE8D?

C C
AF 3 F
+ EE8D
$=19 \mathrm{DCC}$

Two's complement

- What is the 2's complement 2-byte representation of -153_{10} in hexadecimal?

Solution

- What is the 2's complement representation of
-153_{10} in hexadecimal?
- $153_{10}=0099_{16}$
- complement: FF66
- add 1: FF67

Two's complement

- What is the decimal value of FF4A, a 2-byte numbers stored in 2's complement fashion?

Solution

- What is the decimal value of FF4A, a 2-byte numbers stored in 2's complement fashion?
- FF4A = $1 \ldots 2$
- Therefore it represents a negative number, let's invert it
- Invert: 00B5
- Add 1: 00B6 = B6
- $\mathrm{B6}_{16}=11^{*} 16+6=176+6=182_{10}$
- Therefore, in 2's complement notation, FF4A is -182_{10}

Two's complement

- What is the 2's complement 1-byte representation of -81_{10} in hexadecimal?

Solution

- What is the 2's complement 1-byte representation of -81_{10} in hexadecimal?
$\square 81_{10}=51_{16}$
\square complement: AE
\square add 1: AF

Two's complement

- What is the decimal value of 76h, a 1-byte number stored in 2's complement fashion?

Solution

- What is the decimal value of 76, a 1-byte numbers stored in 2's complement fashion?
\square It's a positive number, so 76 is simply the hex value of the integer
\square Answer: $7^{*} 16^{1}+6^{*} 16^{0}=118_{10}$

Ranges of numbers

- What is the largest unsigned decimal number that can be encoded with 8 bits?
- What is the smallest unsigned decimal number that can be encoded with 8 bits?
- What is the largest signed decimal number that can be encoded with 8 bits?
- What is the smallest signed decimal number that can be encoded with 8 bits?
- What is the 2's complement representation of -1_{10} with 32 bits?

Solutions

- What is the largest unsigned decimal number that can be encoded with 8 bits?
$\square 255$ (i.e., FF in 2's complement representation)
- What is the smallest unsigned decimal number that can be encoded with 8 bits?
$\square 0$ (i.e., 00 in 2's complement representation)
- What is the largest signed decimal number that can be encoded with 8 bits?
\square Largest that isn't negative: 7F in 2's complement representation $=127_{10}$
- What is the smallest signed decimal number that can be encoded with 8 bits?
\square Smallest that isn't positive: 80 in 2's complement representation $=-128_{10}$
- What is the 2 's complement representation of -1_{10} with 32 bits?
- 1 = 00000001; complement: FFFFFFFE; add one: FFFFFFFF

