
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Buffer Overflow

Buffer Overflow
 You likely have heard of the “buffer overflow”

method for exploiting a vulnerability of a program
 e.g., to cause a Web server to do something

potentially harmful, such as running code it wasn’t
supposed to run

 The way in which this technique works is based
on damaging the runtime stack

 Now that we know what the stack looks like, let’s
see if we can understand how buffer overflow
works

 We use the standard, most simple, example

The Basic Idea
 The goal is to have a program run code it wouldn’t run in a

normal/valid/allowed execution
 This is done by overwriting a return address on the stack
 When RET is executed, it pops off a 4-byte value from the stack,

interprets it as an address in the text segment, and jumps to it
 If, somehow, these 4 bytes were modified illegally, then the

program jumps to any address and starts running code
 Some function in the program
 Some library function or system call
 Some arbitrary code (if one is a bit clever)

 This can be easily done if
 The original program does unsafe memory operations
 The attacker has knowledge of the program and of the architecture
 The attacker is reasonably clever

Corrupting the Stack

 Consider the following C program sketch,
which takes one command-line argument:

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

strcpy simply goes through
the bytes in str and copies
each byte into buffer, until it
hits a \0 character

The Stack

 The Stack before the call to strcpy()

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

The Stack

 The Stack before the call to strcpy()

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

The Stack

 The Stack in the call to strcpy()

void exploitable(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 exploitable(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

return @ (to f)

saved EBP (for f)

Writing into the buffer
 Say that argv[1]=”SomeString!\0”
 strcpy() writes it on the stack, in buffer[]

void exploitable(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 exploitable(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

n g ! \0

S t r i

S o m e

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

return @ (to f)

saved EBP (for f)

Bad code

 The problem is that the code is buggy
 C being C, you write past the end of the array
 Say the code is part of a Web server, which is

compiled and running on some host
 Say that the string passed to f comes from

some Web request via the network
 If a string that is too long is passed, then the

stack will be corrupted..

Writing into the buffer
 Say that argv[1]=”SomeOtherStringMuchLonger!!\0”
 strcpy() writes it on the stack, in buffer[]

r ! ! \0 (argv[1)

o n g e (return @)

u c h L (saved EBP)

i n g M

r S t r

O t h e

S o m e

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

return @ (to f)

saved EBP (for f)

 When strcpy returns, it restores
ebp for f and returns to f

 f then pops the two parameters
for strcpy

 When f returns it
 removes space for buffer
 restores the saved EBP to

“uchL” (bogus)
 jumps to address “onge”!

So What?
 If an attacker knows the address of some subprogram,

he/she can create a string so that bytes 20-23 (“onge”
in our example) form the bytes of this address!

 This requires that the attacker know the address of
some subprogram to call
 Can be discovered by “looking” at the program in debug

mode (see later in the semester)
 Only doable for known/standard programs

 e.g., knowing that a Web server runs Apache, knowing which
version it is, knowing the address of some function in that version,
then one can perhaps exploit a buffer overflow

 More involved exploit: the overflowing string contains
code, and the “fake” return address points to this code
 One can then run arbitrary code that “looks like a string”

What can we do about it?
 A simple idea: make sure the subprogram doesn’t

overwrite activation records willy nilly
 The activation record should be the subprogram’s “play pen”

 But this would be tricky and costly
 Some writes to the stack outside the activation record should

be allowed (i.e., g passes to f a pointer to one of its local
variables)

 Would have to do an “is this ok?” check for every memory
store operation

 Another idea, is to use a stack canary
 Have the compiler insert hidden local variables with secret

values known to the compiler
 Before doing the ret instruction, check that the canary hasn’t

changed!

Stack Canary

 Stack without canary

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

Stack Canary

 Stack with canary

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

Canary

Stack Canary

 Buffer overflow modifies the canary!

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

r!!\0

onge

ingM

rStr

Othe

Some

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

uchL

Stack Canary

 The ret instruction BEFORE doing a pop
checks the canary

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

r!!\0

onge

ingM

rStr

Othe

Some

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

uchL

Stack Canary

 The canary has changed, and we branch to
code that terminates
the program

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

r!!\0

onge

ingM

rStr

Othe

Some

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

uchL

In practice

 Most compilers allow you to generate code
that does runtime checks

 Check your compiler’s documentation

 In gcc, flag -fstack-protector-all will make a
canary for all functions
 Safe, but a bit slow..

Conclusion

 Understanding what the stack looks like is
necessary to understand how the system can
be attacked

 This was the simplest example, and there is
more to this

 A course like ICS426 provides more in-depth
coverage of such topics

