Buffer Overfilow

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

" A
Buffer Overflow

® You likely have heard of the “buffer overflow”
method for exploiting a vulnerability of a program

e.g., to cause a Web server to do something
potentially harmful, such as running code it wasn't
supposed to run

® The way in which this technique works is based
on damaging the runtime stack

B Now that we know what the stack looks like, let's
see if we can understand how buffer overflow
works

m \We use the standard, most simple, example

" A
The Basic Idea

® The goal is to have a program run code it wouldn’t run in a
normal/valid/allowed execution

® This is done by overwriting a return address on the stack

® \When RET is executed, it pops off a 4-byte value from the stack,
Interprets it as an address in the text segment, and jumps to it

® |f, somehow, these 4 bytes were modified illegally, then the
program jumps to any address and starts running code
Some function in the program
Some library function or system call
Some arbitrary code (if one is a bit clever)
® This can be easily done if
The original program does unsafe memory operations
The attacker has knowledge of the program and of the architecture
The attacker is reasonably clever

Corrupting the Stack

m Consider the following C program sketch,
which takes one command-line argument:

void f(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main(int argc, char **argv) {
f(argv([1]);
}

strcpy simply goes through
the bytes in str and copies
each byte into buffer, until it
hits a \O character

The Stack

m The Stack before the call to strcpy()

}

}

void f(char *str) {

void main(int argc, char **argv) {

char buffer[16];
strcpy(buffer, str);

f(argv[1]);

increasing addresses

A

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

The Stack

m The Stack before the call to strcpy()

}

}

void f(char *str) {

void main(int argc, char **argv) {

char buffer[16];
strcpy(buffer, str);

f(argv[1]);

increasing addresses

A

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

The Stack

m The Stack in the call to strcpy()

}

}

void exploitable(char *str) {

void main(int argc, char **argv) {

char buffer[16];
strcpy(buffer, str);

exploitable(argv[1]);

increasing addresses

A

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

return @ (to f)

saved EBP (for f)

Writing into the buffer

®m Say that argv[1]="SomeString\Q”
m strcpy() writes it on the stack, in buffer(]

}

}

void exploitable(char *str) {

char buffer[16];
strcpy(buffer, str);

void main(int argc, char **argv) {

exploitable(argv[1]);

increasing addresses

A

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

ng!\0

Stri

Some

parameter str

parameter buffer

return @ (to f)

saved EBP (for f)

" A
Bad code

B The problem is that the code is buggy
m C being C, you write past the end of the array

m Say the code is part of a Web server, which is
compiled and running on some host

m Say that the string passed to f comes from
some Web request via the network

m |f a string that is too long is passed, then the
stack will be corrupted..

" J
Writing into the buffer

m Say that argv[1]="SomeOtherStringMuchLonger!\0”
m strcpy() writes it on the stack, in buffer(]

® \When strcpy returns, it restores
ebp for f and returns to f

® fthen pops the two parameters
for strcpy

® \When f returns it
® removes space for buffer

B restores the saved EBP to
“uchL” (bogus)

® jumps to address “onge”’!

increasing addresses

ﬁ

ingM

rStr
Othe

parameter str

return @ (to f)
saved EBP (for f)

Some <

parameter buffer —

" B
So What?

m |f an attacker knows the address of some subprogram,
he/she can create a string so that bytes 20-23 (“onge”
in our example) form the bytes of this address!

®m This requires that the attacker know the address of
some subprogram to call

Can be discovered by “looking” at the program in debug
mode (see later in the semester)

Only doable for known/standard programs

= e.g., knowing that a Web server runs Apache, knowing which
version it is, knowing the address of some function in that version,
then one can perhaps exploit a buffer overflow

® More involved exploit: the overflowing string contains
code, and the “fake” return address points to this code

One can then run arbitrary code that “looks like a string”

" A
What can we do about it?

®m A simple idea: make sure the subprogram doesn't
overwrite activation records willy nilly

The activation record should be the subprogram’s “play pen”

m But this would be tricky and costly

Some writes to the stack outside the activation record should
be allowed (i.e., g passes to f a pointer to one of its local
variables)

Would have to do an “is this ok?” check for every memory
store operation
B Another idea, is to use a stack canary

Have the compiler insert hidden local variables with secret
values known to the compiler

Before doing the ret instruction, check that the canary hasn't
changed!

Stack Canary

m Stack without canary

}

}

void f(char *str) {

void main(int argc, char **argv) {

char buffer[16];
strcpy(buffer, str);

f(argv[1]);

increasing addresses

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

Stack Canary

m Stack with canary

}

}

void f(char *str) {

void main(int argc, char **argv) {

char buffer[16];
strcpy(buffer, str);

f(argv[1]);

increasing addresses

parameter argv[1]

return @ (to main)

saved EBP (for main)

Canary

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

Stack Canary

m Buffer overflow modifies the canary!
ﬁ

parameter argv[1]

}

}

void f(char *str) {

void main(int argc, char **argv) {

char buffer[16];
strcpy(buffer, str);

f(argv[1]);

increasing addresses

parameter str

parameter buffer —

"
Stack Canary

® The ret instruction BEFORE doing a pop

checks the canary A

7))

void f(char *str) { B
char buffer[16]; @
strcpy(buffer, str); xS

} >
i=

void main(int argc, char **argv) { G
()

fargv[1]); S

} §=

parameter argv[1]

parameter str

parameter buffer —

Stack Canary

® The canary has changed, and we branch to

code that terminates
the program

void f(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main(int argc, char **argv) {
f(argv[1]);
}

increasing addresses

ﬁ

parameter argv[1]

parameter str

parameter buffer —

" J
In practice

® Most compilers allow you to generate code
that does runtime checks

®m Check your compiler’'s documentation

® |n gcc, flag -fstack-protector-all will make a
canary for all functions

Safe, but a bit slow..

" A
Conclusion

m Understanding what the stack looks like is

necessary to understand how the system can
be attacked

®m This was the simplest example, and there is
more to this

m A course like ICS426 provides more in-depth
coverage of such topics

