
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Buffer Overflow

Buffer Overflow
 You likely have heard of the “buffer overflow”

method for exploiting a vulnerability of a program
 e.g., to cause a Web server to do something

potentially harmful, such as running code it wasn’t
supposed to run

 The way in which this technique works is based
on damaging the runtime stack

 Now that we know what the stack looks like, let’s
see if we can understand how buffer overflow
works

 We use the standard, most simple, example

The Basic Idea
 The goal is to have a program run code it wouldn’t run in a

normal/valid/allowed execution
 This is done by overwriting a return address on the stack
 When RET is executed, it pops off a 4-byte value from the stack,

interprets it as an address in the text segment, and jumps to it
 If, somehow, these 4 bytes were modified illegally, then the

program jumps to any address and starts running code
 Some function in the program
 Some library function or system call
 Some arbitrary code (if one is a bit clever)

 This can be easily done if
 The original program does unsafe memory operations
 The attacker has knowledge of the program and of the architecture
 The attacker is reasonably clever

Corrupting the Stack

 Consider the following C program sketch,
which takes one command-line argument:

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

strcpy simply goes through
the bytes in str and copies
each byte into buffer, until it
hits a \0 character

The Stack

 The Stack before the call to strcpy()

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

The Stack

 The Stack before the call to strcpy()

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

The Stack

 The Stack in the call to strcpy()

void exploitable(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 exploitable(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

return @ (to f)

saved EBP (for f)

Writing into the buffer
 Say that argv[1]=”SomeString!\0”
 strcpy() writes it on the stack, in buffer[]

void exploitable(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 exploitable(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

n g ! \0

S t r i

S o m e

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

return @ (to f)

saved EBP (for f)

Bad code

 The problem is that the code is buggy
 C being C, you write past the end of the array
 Say the code is part of a Web server, which is

compiled and running on some host
 Say that the string passed to f comes from

some Web request via the network
 If a string that is too long is passed, then the

stack will be corrupted..

Writing into the buffer
 Say that argv[1]=”SomeOtherStringMuchLonger!!\0”
 strcpy() writes it on the stack, in buffer[]

r ! ! \0 (argv[1)

o n g e (return @)

u c h L (saved EBP)

i n g M

r S t r

O t h e

S o m e

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

return @ (to f)

saved EBP (for f)

 When strcpy returns, it restores
ebp for f and returns to f

 f then pops the two parameters
for strcpy

 When f returns it
 removes space for buffer
 restores the saved EBP to

“uchL” (bogus)
 jumps to address “onge”!

So What?
 If an attacker knows the address of some subprogram,

he/she can create a string so that bytes 20-23 (“onge”
in our example) form the bytes of this address!

 This requires that the attacker know the address of
some subprogram to call
 Can be discovered by “looking” at the program in debug

mode (see later in the semester)
 Only doable for known/standard programs

 e.g., knowing that a Web server runs Apache, knowing which
version it is, knowing the address of some function in that version,
then one can perhaps exploit a buffer overflow

 More involved exploit: the overflowing string contains
code, and the “fake” return address points to this code
 One can then run arbitrary code that “looks like a string”

What can we do about it?
 A simple idea: make sure the subprogram doesn’t

overwrite activation records willy nilly
 The activation record should be the subprogram’s “play pen”

 But this would be tricky and costly
 Some writes to the stack outside the activation record should

be allowed (i.e., g passes to f a pointer to one of its local
variables)

 Would have to do an “is this ok?” check for every memory
store operation

 Another idea, is to use a stack canary
 Have the compiler insert hidden local variables with secret

values known to the compiler
 Before doing the ret instruction, check that the canary hasn’t

changed!

Stack Canary

 Stack without canary

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

Stack Canary

 Stack with canary

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

return @ (to main)

saved EBP (for main)

space for buffer[12-15]

space for buffer[8-11]

space for buffer[4-7]

space for buffer[0-3]

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

Canary

Stack Canary

 Buffer overflow modifies the canary!

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

r!!\0

onge

ingM

rStr

Othe

Some

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

uchL

Stack Canary

 The ret instruction BEFORE doing a pop
checks the canary

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

r!!\0

onge

ingM

rStr

Othe

Some

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

uchL

Stack Canary

 The canary has changed, and we branch to
code that terminates
the program

void f(char *str) {
 char buffer[16];
 strcpy(buffer, str);
}

void main(int argc, char **argv) {
 f(argv[1]);
}

parameter argv[1]

r!!\0

onge

ingM

rStr

Othe

Some

parameter str

parameter buffer

in
cr

ea
si

ng
 a

dd
re

ss
es

uchL

In practice

 Most compilers allow you to generate code
that does runtime checks

 Check your compiler’s documentation

 In gcc, flag -fstack-protector-all will make a
canary for all functions
 Safe, but a bit slow..

Conclusion

 Understanding what the stack looks like is
necessary to understand how the system can
be attacked

 This was the simplest example, and there is
more to this

 A course like ICS426 provides more in-depth
coverage of such topics

