
ICS332
Operating Systems

OS Structures

OS Services and Features

OS Services and Features

Helpful to users Better efficiency/operation

OS Services
 Load and run a program
 Allow a program to end in multiple ways

 e.g., with error codes

OS Services
 Allow programs access to I/O devices

OS Services
 Provides file/directory abstractions
 Allow programs to create/delete/read/write
 Implements permissions

OS Services
 Provides abstractions for processes to

exchange information
 Shared memory
 Message passing

OS Services
 The OS needs to be aware of all errors

 CPU, memory, I/O, etc.
 User programs

 The OS needs to take action

OS Features
 Decides which process gets which resource

when
 CPUs, Memory, I/O, etc.

OS Features
 Keeps track of how much is used by each user

 Can impose limits
 Useful for statistics

OS Features
 Controls access to resources
 Enforces authentication of all users
 Allows users to protect their content

OS Services and Features

OS Interfaces: The CLI (aka Shell)

 Most OSes come with a command-line interpreter (CLI), typically
called the shell

 There are many UNIX Shells (bash, ksh, csh, tcsh, etc.)
 Type “echo $SHELL” in a terminal to see which one you’re using

 The user types commands, and the shell interprets them
 The Shell implements some commands, meaning that the source

code of the Shell contains the code of the commands
 e.g., cd, bg, exit,
 Let's see them all by doing a “man bash” (searching for the last

occurrence of “BUILTIN”)
 The Shell cannot implement all commands (i.e., contain their code):

 It would become huge
 Adding a command would mean modifying the shell, leading users to

do countless updates
 Instead, most Shells simply call system programs

 In fact, the shell doesn’t understand (most) “commands”

OS Interfaces: The Shell (CLI)
 Example in UNIX: “rm file.txt” in fact executes the

“/bin/rm” program that knows how to remove a file
 “rm” is not a UNIX command, it’s the name of a program

 Adding a new “command” to the shell then becomes
very simple

 And we can all add our own
 They are just programs that we think of as “commands”
 In fact, we could write a program, call it “rm”, put its

executable in /bin/, and we have a new rm “command”
 The terms “command” and “system program” are often

used interchangeably
 But it is important to remember that “rm” and “cd”

are very different animals

 type built-in (type -t rm; type -t ll; type -t cd)

System Programs
 Some system programs are simple wrappers around

system calls (see later)
 e.g., /bin/sleep

 Some are very complex
 e.g., /bin/ls

 The term “system program” is in fact rather vague
 Some are thought of as commands, and some as

applications
 Do you think of the javac compiler as a command, an

application or as a system program?
 System programs are not part of the “OS” per se,

but many of them are always installed with it
 The term “OS” is in fact rather vague also

 What is often meant is “Kernel”

OS Interfaces: Graphical (GUI)
 Graphical interfaces appeared in the early

1970s
 Xerox PARC research

 Popularized by Apple’s Macintosh (1980s)
 Many UNIX users prefer the command-line

for many operations, while most Windows
users prefer the GUI
 Mac OS used not to provide a command-line

interface, but Mac OS X does: Terminal.

 Question: is the GUI part of the OS or not?
 More general question: what’s part of the OS?

System Calls
 System calls are the (lowest-level) interface to OS services
 Almost all useful programs need to call OS services

 Could be more or less hidden to the programmer
 Called directly (assembly), somewhat directly (C, C++), or more indirectly (Java)

 Even simple programs can use many system calls
 Example from the book on page 63: a program that copies data from one file to another

System Calls
 On Linux there is a “command” called strace that gives

details about which system calls were placed by a program
during execution
 dtruss on Mac OSX is roughly equivalent

 Let’s look at what it shows us when I copy a large file with
the cp command on my Linux server
 (Create a file with dd) ; strace -xf cp <source> <target>

Let’s count the number of system calls using the wc command
 Let’s try with a tiny file and compare
 Let’s look at the system calls and see if they make sense
 Let’s try very simple commands and see... e.g.

 Conclusion: there are TONS of system calls
 strace can be “attached” to a running program!

 to find out, e.g., why a program is stuck!

Time Spent in System Calls?

 The time command is a simple way to time the
execution of a program

Not great precision/resolution, but fine for getting a rough idea

 Time is used just like strace: place it in front of the
command you want to time

 It reports three times:
 “real” time: wall-clock time (also called elapsed time,

execution time, run time, etc.)
 “user” time: time spent in user code (user mode)
 “system” time”: time spent in system calls (kernel mode)

 Let’s try in on a ls -R command...

Time Spent in System Calls?

 The sum of the user time and the system time
is not necessarily equal to the elapsed time

 Typical execution of a program:

User System

 Any idea what those gray zones are?

time

Time Spent in System Calls?

 The sum of the user time and the system time
is not necessarily equal to the elapsed time

 Typical execution of a program:

User System

time

The program is waiting for
some device (disk, network,
keyboard), as requested by
a system call

Probably more realistic

Time Spent in System Calls?

 The sum of the user time and the system time
is not necessarily equal to the elapsed time

 Typical execution of a program:

User System

time

Some other program is
running on the CPU

APIs
 System calls are mostly accessed by programs via a

high-level Application Program Interface (API)
 API functions can call (multiple) system calls under the cover
 API calls are often simpler than full-fledge system calls

 Some system calls are really complicated (Programmers would likely
write their own “wrappers” anyway)

 In many cases, however, the API call is very similar to the
corresponding system call (just a “wrapper”)

 If the API is standard, then the code can be portable
 Standard APIs:

 Win16, Win32, Win64 API for Windows OS
 POSIX [Portable Operating Systems Interface IEEE-IX] for

UNIX systems (POSIX: HP-UX, AIX, Solaris, OS X; POSIX-
Compliant: Linux, Android, Cygwin)

 The Java API (provides API to the Java Virtual Machine (JVM)
which has OS-like functionality on top of the OS)

Java API Example

 The write method in java.io.OutputStream, to write to a file or network
 b: the byte array that contains the data to be written
 off: the starting offset in array b
 len: the number of bytes to be written

 Similar in spirit (if not in details) to the write system calls in other standard APIS

 Let’s do a “man 2 write” on a Linux system and compare
 The book show the read system call in C (page 64)

The JVM and the OS

Hardware

OS

System Calls

System Call API

User code, libraries, etc.

 This is the traditional view of
an application running on
top of the OS

 The application uses the
System Call API to place
system calls

 The OS performs work on
behalf of the application for
each system call

 A lot of that work entails
interacting with the
hardware

The JVM and the OS

Hardware

OS

System Calls

System Call API

Java Virtual Machine

 The JVM is just an
application

 It interacts with the OS using
the System Call API

 But it also interprets byte
code that places calls to the
Java API

 The JVM performs work on
behalf of the byte code for
each API call

 Some of this work is then
passed on to the OS from
the JVM via the System Call
API

Java API

Java Program

The JVM and the OS

Hardware

OS

System Calls

System Call API

Java Virtual Machine

 The JVM is just an
application

 It interacts with the OS using
the System Call API

 But it also interprets byte
code that places calls to the
Java API

 The JVM performs work on
behalf of the byte code for
each API call

 Some of this work is then
passed on to the OS from
the JVM via the System Call
API

 The Java API is NOT an
interface to system calls

 BUT some of the API calls
place (more or less direct)
calls to the System Call API

Java API

Java Program

The JVM and the OS

Hardware

OS

System Calls

System Call API

Java Virtual Machine

 A Java program can also
place a “native” (non-
portable) call to some C
code, bypassing the JVM

(See JNI for further info)

Java API

Java Program C/C++ program

The System Call Interface
 Remember that each system call is identified by a number
 The run-time support system provides a system call

interface
 The run-time support system is a set of useful functions built

into libraries included with a compiler
 System calls numbers are stored in an internal table

The Syscall Table

 Let’s look a bit inside the Linux Kernel
 include/[uapi/]asm/unistd_64.h defines syscall

numbers for a 64-bit system
(locate <filename>; updatedb as super-user to create the filenames database)

 There are ~400 system calls
 Can we identify a few of them?

Types of System Calls

 Process control
 File management
 Device management
 Information maintenance
 Communications
 Protection

Read Section 2.4 as “warm up”

We’ll talk about the above in detail in future lectures

OS Design
 We don’t know the best way to design and

implement an OS
 As a result, the internal structure of different

OSes can vary widely
 Luckily, some approaches have worked well

 Goals lead to specifications
 Affected by choice of hardware, type of system
 User goals and System goals

 User goals – operating system should be convenient to
use, easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient

 Basically all the good software engineering that one should almost
always strive for

Mechanisms and Policies
 One ubiquitous principle: separating mechanisms and

policies
 Policy: what should be done
 Mechanism: how it should be done

 Separation is important so that, most of the time, one can
change policy without changing mechanisms

 Mechanisms should be low-level enough that many useful
policies can be built on top of them

 Mechanisms should be high-level enough that implementing
useful policies on top of them is not too labor intensive

 Some OS designs take this separation principle to the
extreme (e.g., Microkernels)

 e.g., Solaris implements completely policy-free mechanisms
 Some OS designs not so much

 e.g., Windows

OS Implementation

 OSes used to be written in assembly
 e.g. MS-DOS (yikes!)

 Modern OSes are written in languages like C,
or “improved” Cs, with a splash of assembly
 Linux, Windows XP
 The OS should be fast, and compilers are

good enough, and machines are fast enough
that it makes sense nowadays to use high-
level languages

 Besides, some small crucial sections can be
rewritten in assembly if needed (not so much for
speed as for calling specific instructions)

OS Structure: Simple
 Early OSes didn’t really have a

precisely defined structure (which
became a problem when they grew
beyond their original scope)

 MS-DOS was written to run in the
smallest amount of space possible,
leading to poor modularity,
separation of functionality, and
security

 e.g., user programs can directly
access some devices!

 the hardware at the time had no
mode bit for user/kernel
differentiation, so security wasn’t
happening anyway

OS Structure: Simple

 Early UNIX also didn’t have a great structure, but
at least had some simple layering

 The huge, monolithic Kernel did everything and was
incredibly difficult to maintain/evolve

OS Structure: Layered

OS Structure: Layered
 Natural way to add more modularity: pack layers on top of

each other
 Layer n+1 uses only layer n

 Everything in layers below is nicely hidden and can be changed
 Simple to build and debug

 debug layer n before looking at layer n+1

 Sounds nice, but what goes in what layers?
 For two functionalities X and Y, one must decide if X is above,

at the same level, or below Y
 This is not always so easy

 And it can be much less efficient
 Going through layers for each system call takes time

 Parameters put on the runtime stack, jump, etc.

 There should be few layers

OS Structure: Microkernels
 By contrast with the growing monolithic UNIX kernel, the microkernel

approach tries to remove as much as possible from the kernel and putting it
all in system programs

 Kernel: process management, memory management, and some communication

 Everything is then implemented with client-server
 A client is a user program
 A server is a running system program, in user space, that provides some service
 Communication is through the microkernel’s communication functionality

 This is very easy to extend since the microkernel doesn’t change
 And no decision problems about layers

 Problem: increased overhead
 WinNT 4.0 had a microkernel... and was slower than Win95
 This was later fixed by putting things back into the no-longer-micro kernel
 WinXP is closer to monolithic than micro
 This shows that OS developers constantly experiment, and you’ll find OS people

strongly disagreeing on OS structure

OS Structure: Microkernels

OS Structure: Modules
 Most modern OSes implement modules

 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Loadable modules can be loaded at boot time or at runtime
 Like a layered interface, since each module has its own interface
 But a module can talk to any other module, so it’s like a

microkernel
 But communication is not done via message passing since

modules are actually loaded into the kernel
 Bottom line:

 Design has advantage of microkernels
 Without the overhead problem

Solaris

 7 default modules
 Others can be added on the fly

Hybrid systems

 Very few modern OSes adhere strictly to
one of these designs

 Instead, they try to take grab the best
features of multiple design ideas

 Typical approach:
 Don’t stray too far away from monolithic, so as

to have good performance
 Most OSes provide the notion of modules

 The book gives three examples
 Mac OSX, iOS, Android

Mac OS X

 Hybrid structure: two kernel layers
 Mach: Memory management, Remote Procedure Calls, Inter-Process

Communication, Thread Scheduling
 One of the oldest micro-kernels

 BSD: Implements all POSIX services (file system, networking, I/O,
dynamically loadable modules, etc.)

 I/O kit: used to develop device drivers (see later)
 Kernel extensions: loadable modules

OS Debugging
 OS debugging is hard

 The kernel is complex and does many hardware things

 A crash dump (like a core dump, but for the kernel, since
kernel failure leads to a crash) can be generated

 But a kernel bug in the file system makes generating a crash
dump difficult

 One possibility: use a special disk area to write crash dump data
 Upon reboot, crash dump data is written to a file in the file

system

Kernighan’s Law
“Debugging is twice as hard as writing the code in the first place.

Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it”

OS Debugging
 Kernel debugging isn’t as much a dark art as it

used to be: we have some tools
 DTrace tool in Solaris, FreeBSD, Mac OS X

(SystemTap for Linux) allows live instrumentation
on production systems

 Probes fire when code is executed, capturing state data
 Section 2.8.3 has many details

 In fact, there are simple command-line tools to do
basic tracing of system calls:

 On a Linux system, we’ve seen strace
 On Max OS X, Solaris there’s truss/dtruss
 On a Windows system: ProcessMonitor (not built-in) / Core OS Tools

for Win 7+ (not sure if available in all Win)

OS Boot
 So how does this thing start anyway?
 The first thing to do is to load the kernel into memory, which

is called booting
 When the computer is powered on, the instruction pointer is

loaded with a particular address, and execution starts there
 At that address is a program called the bootstrap loader
 Like all “firmware”, it is stored in ROM

 Initially, RAM state is completely undefined
 ROM is expensive, so the firmware had better be small

 The bootstrap loader runs diagnostic, initializes registers,
memory, device controllers, etc.

 e.g., all the stuff you see go by when you boot your a
Linux machine

OS Boot
 At this point the OS is still stored on disk
 The bootstrap loader loads a disk block at a standard

location (say block #0 on the disk) into RAM
 This boot block contains a program that knows how to

load the OS
 Or it knows how to load a more complex bootstrap program

into RAM, which then knows how to load the OS
 A disk that has such a boot block is called a boot disk,

a bootable disk, or a system disk (or a disk partition)
 The Kernel is then loaded into memory
 The bootstrap loader starts the Kernel

 Which starts the init process and simply waits for events

Conclusion
 Reading Assignment:

 Textbook, Chapter 2
 Read Programming Project (page 96)

 Adding a system call to Linux
 And play around with it if you’re into it (using

VirtualBox to install Linux on your system)
 lsmod, insmod, rmmod, dmesg

	OS Structures
	OS Services and Features
	OS Services and Features
	OS Services
	OS Services
	OS Services
	OS Services
	OS Services
	OS Features
	OS Features
	OS Features
	OS Services and Features
	OS Interfaces: The Shell (CLI)
	OS Interfaces: The Shell (CLI)
	System Programs
	OS Interfaces: Graphical (GUI)
	System Calls
	System Calls
	Time Spent in System Calls?
	Time Spent in System Calls?
	Time Spent in System Calls?
	Time Spent in System Calls?
	APIs
	Java API Example
	The JVM and the OS
	The JVM and the OS
	The JVM and the OS
	The JVM and the OS
	The System Call Interface
	The Hidden Syscall Table
	Types of System Calls
	OS Design
	Mechanisms and Policies
	OS Implementation
	OS Structure: Simple
	OS Structure: Simple
	OS Structure: Layered
	OS Structure: Layered
	OS Structure: Microkernels
	OS Structure: Microkernels
	OS Structure: Modules
	Solaris
	Hybrid systems
	Mac OS X
	OS Debugging
	OS Debugging
	OS Boot
	OS Boot
	Conclusion

