Inter-Process

Communications
(IPCs)

ICS332
Operating Systems

"
Communicating Processes

® Processes within a host may be independent or cooperating

B Reasons for cooperating processes:
Information sharing
" e.g., Coordinated access to a shared file
Computation speedup
" e.g., Each process uses a different core (more likely done w/ threads)

Modularity

" e.g., Systems designed as sets of processes are modular because
one process can be easily replaced by another

Convenience
® Some tasks are expressed naturally as sets of processes

® The means of communication for cooperating processes is
called Interprocess Communication (IPC)

® Two broad models of IPC
Shared memory
Message passing

" A
Communication Models

process A M process A [
PH L

shared ﬂ
2

process B M process B -

2 | 1
kernel M kernel
(a) (b)
message shared

passing memory

" A
Communication Models

B Mainstream OSes (Lin, Win, Mac) implement both models
B Message-passing

useful for exchanging small amounts of data

simple to implement in the OS

sometimes cumbersome for the user as code is sprinkled
with send/recv operations

high-overhead: one syscall per communication operation
® Shared memory
low-overhead: a few syscalls initially, and then none

more convenient for the user since we're used to simply
reading/writing from/to RAM

more difficult to implement in the OS

"
Shared Memory

® Processes need to establish a shared memory region
One process creates a shared memory segment

Processes can then “attach” it to their address spaces

® Note that this is really contrary to the memory protection idea
central to multi-programming!

B Processes communicate by reading/writing to the shared
memory region
They are responsible for not stepping on each other’s toes
The OS is not involved at all
B The textbook has a producer/consumer example, which
you must read (Section 3.4.1)
It's in C, but very Java-like
Processes read/write data in a shared buffer
We’'ll talk about producer/consumer again

"
Example: POSIX Shared Memory

® POSIX Shared Memory

Process first creates shared memory segment
id = shmget (IPC PRIVATE, size, IPC R | IPC W);
Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, 0);
Now the process can write to the shared memory
sprintf (shared memory, “hello”);

When done a process can detach the shared memory from its
address space

shmdt (shared memory) ;
Complete removal of the shared memory segment is done with
shmctl (id, IPC RMID, NULL);

B See posix_shm_example.c

"
Example: POSIX Shared Memory

B Question: How do processes find out the ID of the
shared memory segment?

B |[n posix_shm_example.c, the id is created before the
fork() so that both parent and child know it

How convenient!

® There is no general solution
The id could be passed as a command-line argument
The id could be stored in a file
Better: one could use message-passing to communicate the id!
B On a system that supports POSIX, you can find out the
status of IPCs with the ‘ipcs -a’ command
run it as root to be able to see everything

you'll see two other forms of ipcs: Message Queues, and
Semaphores

" A
It all seems cumbersome

® The code for using shm ipcs is pretty cumbersome
The way to find out the id of the memory segment is clunky, at least
® This is perhaps not surprising given that we're breaking one of
the fundamental abstractions provided by the OS: memory
Isolation

We'll see how memory isolation is implemented and how it can be
broken for sharing memory between processes in the second part of
the semester

® Nowadays shm-type code is not very common, which is
probably a good thing

But processes still share memory under the cover (e.g., code segments
for standard library functions)

® Sharing memory among multiple running context is done using
threads, as we’'ll see in the next lecture

All of the power of shm stuff, none of the inconvenience

" J
Message Passing

® \With message passing, processes do not share any address
space for communicating

So the memory isolation abstraction is maintained
® Two fundamental operations:

send: to send a message (i.e., some bytes)

recv: to receive a message (i.e., some bytes)
B |[f processes P and Q wish to communicate they

establish a communication “link” between them

® This “link” is an abstraction that can be implemented in many ways
even with shared memory!!

place calls to send() and recv()
optionally shutdown the communication “link”

B Message passing is key for distributed computing
Processes on different hosts cannot share physical memory!

B But it is also very useful for processes within the same host

" J
Implementing Message-Passing

B | et's pretend we're designing a kernel, and let’s
pretend we have to design the message-
passing system calls

B | et’'s do this now to see how simple it can be

| am going to show really simple, unrealistic pseudo-
code

B | et’'s say we don’t want an explicit link
establishing call to keep things simple
® \We have to implement two calls

send(Q, message): send a message to process Q
recv(Q, message): recv a message from process Q

"
Implementing Message-Passing

B We'll implement communication between processes as a set of
Message objects, say, in a MessageQueue class

® We need to keep track of all MessageQueue objects so that when
process P wants to talk to process Q, we can find their
MessageQueue object

B | et’'s keep track of MessageQueue objects in a
MessageQueueManager singleton (indexed by the PID of P and
Q)

® The MessageQueueManager, MessageQueue, and Message
objects are stored in the memory of the kernel

Therefore, they can’t get too big, and a real implementation
would have to return an “out of memory” error if we use too
many bytes (e.g., many large messages sent but not received)

" J
Implementing Message-Passing

class ProcessImplementingMessagePassing extends Process {
/* Send a message from this process (P) to process Q */
public void send(int pidProcessQ, Message message) {
int pidProcessP = getMyPid() ;
// Get the Queue associated to (pidProcessP, pidProcessQ)
// (getQueue () creates the Queue if it doesn't exist
MessageQueue g = MessageQueueManager.getQueue (pidProcessP,pidProcessQ) ;
g.putMessage (message) ;

}

/* Receive a message sent from process Q (identified by pidProcessQ)

public Message recv(int pidProcessQ) {
int pidProcessP = getMyPid() ;
MessageQueue g = MessageQueueManager.getQueue (pidProcessP,pidProcessQ) ;

return q.getMessage () ;

} // class ProcessImplementingMessagePassing

"
Implementing Message-Passing

public void send(int pidProcessQ, Message message) {
int pidProcessP = getMyPid() ;
// Get the Queue associated to (pidProcessP, pidProcessQ)
// (getQueue () creates the Queue if it doesn't exist
MessageQueue q = MessageQueueManager.getQueue (pidProcessP,pidProcessQ) ;
qg.putMessage (message) ; // Should this make a copy of the message?

public Message recv(int pidProcessQ) { // what if I want to receive from anybody?
int pidProcessP = getMyPid() ;
MessageQueue q = MessageQueueManager.getQueue (pidProcessP,pidProcessQ) ;

return q.getMessage(); // should block if g is empty?

" JEE
Message Passing Design Decisions

® There are many possible design decisions
Fixed- or variable-length messages
Can a link be associated to more than two processes?
® Not in our pseudo-implementation
Can there be more than one link between two processes?
® Not in our pseudo-implementation
Is a link uni- or bi-directional?
® |n our pseudo-implementation: unidirectional
etc.
B | et's look at 3 questions:
Direct or indirect communication
Synchronous or asynchronous communication
Automatic or explicit buffering

" A
Direct Communication

® That’s what our pseudo-implementation did

B Processes must name each other explicitly:
send (P, message) — send a message to process P
receive(Q) — receive a message from process Q

B Properties of communication link
Links are established “automatically”

A link is associated with exactly one pair of communicating
processes

Between each pair there exists exactly one link

The link may be unidirectional, but is usually bi-directional
B Asymmetric communication “challenge”:

send (P, message) — send a message to process P

receive(&Who) — receive a message from any process,
whose identity is stored in variable Who when the call returns

" A
Indirect Communication

B Messages transit through mailboxes (or “ports” or “doors”)
Each mailbox has a unique id
Processes can communicate only if they share a mailbox

B Properties of the communication link
Link established only if processes share a common mailbox
A link may be associated with many processes
Each pair of processes may share several communication links
Link may be unidirectional or bi-directional

B (Qperations
create a new mailbox
send and receive messages through mailbox
destroy a mailbox

® Primitives:
A = createMailbox()
send(A, message) — send a message to mailbox A
receive(A) — receive a message from mailbox A

" A
Indirect Communication

® The mailbox sharing issue:
P., P,, and P, share mailbox A

P, sends; P, and P, receive
Who gets the message”?

B Possible solutions

Allow a mailbox to be associated with at most two
processes

Allow only one process at a time to execute a receive
operation

Allow the system to select arbitrarily the receiver
= Perhaps notify the sender of who the receiver was

" A
Word of Wisdom

B Designing systems requires spending (a lot of) time
discussing such issues

Decision driven by constraints and requirements
B |t turns out that the definition of abstractions
(semantics and APls) always has deep implications
Many of which are difficult to foresee
Many of which cause disasters
B Being good at designing good abstractions is a very
valuable skKill
Comes w/ experience and knowledge of existing systems

" J
Synchronous/Asynchronous

® The terms blocking/non-blocking and synchronous/asynchronous
are typically used interchangeably

- In some contexts, subtle differences are made, but we can ignore them in
this course

B Message passing may be either blocking or non-blocking

® Blocking = synchronous (in OS context)
Blocking send has the sender block until the message is received
Blocking receive has the receiver block until a message is available
When both are blocking, the operation is called a rendez-vous
communication style

® Non-blocking = asynchronous (in OS context)
Non-blocking send has the sender send the message and continue

= With the option to check on status later (“was my message received?”)

Non-blocking receive has the receiver receive a valid message or null
= With the option to block

"
Buffering

® \While messages are in transit, they reside “in the link” (e.g.,
our MessageQueue object)

® There are three typical message queue implementations
Zero-capacity
® There can be no waiting message

® The sender is blocked
® This enforces a “rendez-vous”

Bounded capacity

= At most n messages can reside in the queue
Or n message bytes

= |f the queue is full, then the sender must block
Unbounded capacity

® The sender never blocks
There should never be anything truly unbounded though

" JE
Example: Mach Message Passing

B Section 3.5.2 in the textbook goes through a description
of mailbox-based message passing in the Mach kernel
It's not difficult, but make sure you read it

B Essentially, it's a message-passing system that makes
particular choices regarding design decisions

B Consider the length/detail of a full description (already 2
pages what high-level overview in the book)

B Extra copies: big performance hit for message-passing

At a minimum: two copies
= copy from user space to kernel space, and the reverse

Mach uses some sort of hidden shared memory implementation
of message-passing to avoid the copies!

Looks a bit like the POSIX shm stuff
® |[n general, memory copies are performance Kkillers

"
Why Memory Copies?

B | et’'s say you want to implement a message
passing library that's convenient to use and
that has the following semantics:

Once a send has been placed by a process, that
process can safely overwrite the message that
contains the data that was sent

= No need for the user to keep wondering “has it been
received yet and can | reuse/overwrite that memory?”

The send() function returns as soon as possible
given the above semantic

" The sender should do quick sends, and then move on to
other work

® To do this, many memory copies may happen

S
Memory Copies Galore

Sender space Receiver space
User buffer } [User buffer }
\ i\
[Library buffer } L|brary buffer }

N

t Kernel buffer

" J
Reducing Memory Copies

B Reducing the number of memory copies is a
well-known goal in system code
So-called “zero-copy” implementations

® |n our example there are 4 memory copies

® The copies from user space to kernel space

could be avoided

If the kernel provides a send/recv abstraction that
does take only pointers, does not do any copy, and
IS simply told “here is a pointer to a message but |
guarantee you that it won’t be overwritten/erased”,
then we can have a different picture, assuming that
a shared-memory region is available

" S
Memory Copies Galore

Sender space Receiver space
[User buffer } [User buffer }
Library buffer i shared
S § memory
N , region!
reference & , reference
p

k reference J

" A
Client-Server Communication

B Applications are often structured as sets of
communication processes
Common across machines (Web browser and Web server)
But useful within a machine as well

B | et's look at
Sockets
RPCs (Remote Procedure Calls)

LPCs (Local PC) in WinNT (renamed ALPC (Advanced LPC)
from WinVista)

Java RMI
Pipes (not in book)

® Tons of other ones (hamed pipes, shared message
queues, CORBA, Google Web Toolkit, Apache Thrift, ...)

The history of IPCs is huge and the number of IPC implementations/abstractions is staggering

" JE
Example: Sockets

B A socket is a data communication endpoint so that
two processes (running on the same host for “Unix or
IPC” sockets / fyi: on different hosts for “network”
sockets) can communicate.

Socket = ip address + port number

B Sockets are typically used to communicate between
two different hosts, but also work within a host

Most network communication in user programs is
written on top of the socket abstraction

" e.g., you'd find sockets in the code of a Web
browser

B Section 3.6.1 describes Sockets
Something you'll see in a networking course

" A
Remote Procedure Calls

B So far, we've seen unstructured message passing

A message is just a sequence of bytes

It's the application’s responsibility to interpret the meaning of those bytes
®m RPC provides a procedure invocation abstraction across hosts

A “client” invokes a procedure on a “server’, just as it invokes a local
procedure

® The magic is done by a client stub, which is code that:

marshals arguments
® Structured to unstructured, under the cover

sends them over to a server
wait for the answer

unmarshals the returned values
® Unstructured to structured, under the cover

® A variety of implementations exists
B Section 3.6.2 in the textbook covers RPC

" A
RPC Semantics

® One interesting issue: what happens if the RPC fails
standard procedure calls almost never fails

® Danger:
The RPC was partially executed
The RPC was executed multiple times due to retries that shouldn’t
have been attempted

B \Weak (easy to implement) semantic: at most once
Server maintains a time-stamp of incoming messages
If a repeated message shows up, ignore it
The client can be overzealous with retries
But the server may never perform the work

B Strong (harder to implement) semantic: exactly once
The server must send an ack to the client saying “I've done it”
The client periodically retries until the ack is received

" A
Local Procedure Calls in Win

® \Windows XP uses an LPC mechanism for structured
message passing between processes on the same host

Essentially like RPC, but just happens to be local, and
therefore doesn’t go out to the network

Described in Section 3.5.2 / Undocumented by MS

® | PCs are not visible to the application program, but are
hidden inside the code of the Win32 library

It's something that system developers use, and that Win32
users use without knowing they do

B | ike in Mach, a shared-memory trick is used to improve
performance for large messages and avoid memory copies
The caller can request a shared memory region, in which

messages will be stored/retrieved and not copied back and
forth from user space to kernel space

= This is obviously not possible with RPCs

"
Java RMI

B RMI is essentially “RPC in Java” in an object-
oriented way

B A process in a JVM can invoke a method of
an object that lives in another JVM

JVM

JVM

- Java -
program

"
Java RMI

® The great thing about RMI is that method arguments
are marshalled/unmarshalled for you by the JVM
B Objects are serialized and deserialized
via the java.io.Serializable interface

® RMI sends copies of local objects and references to
remote objects

B See the books (and countless Java RMI tutorials) for
how to do this

This will come in handy if you write distributed Java
systems

B RMI hides most of the gory details of IPCs

More convenient, but not more “power” (i.e., you can do
with Sockets everything you can do with RPC)

" J——
UNIX Pipes

B Pipes are one of the most ancient, yet simple and useful, IPC
mechanisms provided by UNIX

They’ve also been available in MS-DOS from the beginning

® |In UNIX, a pipe is mono-directional
(Two named pipes (mkfifo) can be used for bidirectional communication)

® One talks of the write-end and the read-end of a pipe
® The “pipe” command-line feature, |, corresponds to a pipe

® The command “Is | grep foo” creates two processes that
communicate via a pipe
The Is process writes on the write-end
The grep process reads on the read-end

B An arbitrary number of pipes can be created:
Is -R /| grep foo | grep -v bar | wc -l
® The book has C examples of how to use pipes (Section 3.6.3)

" A
Java: Communication with an
External OS Process

B Spawning external processes using the
ProcessBuilder class

Has a constructor that takes a command and a
list of arguments, just as if you were to run the
command in a Shell's command line

Creates a Process object, that can be
communicated via standard streams, which
are used for IPC

B | et's look at ProcessBuilderExample.java

And find out more on your own through the
JDK documentation

" J
Java: Synchronous and
Asynchronous /O

B |/O implemented in java.io is synchronous
read(), readLine() wait until data is available for reading
At this point, I'll assume we’re all familiar with java.io

B Synchronous /O is simple to implement but

Difficult to avoid a process just “hanging”: should | attempt to call
readLine() knowing that | may get stuck in it for hours?

Difficult to get data from multiple streams concurrently: should |
attempt to get data from stream A and get stuck there for 10
minutes when 1 second from now there could be data available
from stream B?

B Asynchronous /O is implemented in java.nio
Designed to provide lower-level access to I/O operations
Channel + Buffer replaces Stream
Selector for managing multiple Channels
This is what you should use for high-performance 1/O

" J
Signals

B Signals are a UNIX form of IPC: used to notify a process that
some even has occurred
They are some type of high-level software interrupts
Windows emulates them with APCs (Asynchronous Procedure Calls)
B Example: on a Linux box, when you hit AC, a SIGINT signal is
sent to a process (e.g., the process that’s currently running in
your Shell)

® They can be used for IPCs and process synchronization, but
better methods are typically preferred (especially with threads)
Signals and threads are a bit difficult to manage together
® Once delivered to a process, a signal must be handled
Default handler (e.g., *C is handled by terminating)

The user can specify that a signal should be ignored or can provide a
user-specified handler (not allowed for all signals)

" A
Conclusion

B Communicating processes are the bases for
many programs/services

B OSes provide two main ways for processes to
communicate
shared memory
message-passing
® Fach way comes with many variants and in many
flavors

Sockets, RPCs, Pipes, LPCs, RMI, signals

	Inter-Process Communications (IPCs)
	Communicating Processes
	Communication Models
	Communication Models
	Shared Memory
	Example: POSIX Shared Memory
	Example: POSIX Shared Memory
	It all seems cumbersome
	Message Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Message Passing Design Decisions
	Direct Communication
	Indirect Communication
	Indirect Communication
	Word of Wisdom
	Synchronous/Asynchronous
	Buffering
	Example: Mach Message Passing
	Why Memory Copies?
	Memory Copies Galore
	Reducing Memory Copies
	Memory Copies Galore
	Client-Server Communication
	Example: Sockets
	Remote Procedure Calls
	RPC Semantics
	Local Procedure Calls in XP
	Java RMI
	Java RMI
	UNIX Pipes
	Java: Communication with an External OS Process
	Java: Synchronous and Asynchronous I/O
	Signals
	Conclusion

