
ICS332
Operating Systems

Inter-Process
Communications
(IPCs)

Communicating Processes
 Processes within a host may be independent or cooperating
 Reasons for cooperating processes:

 Information sharing
 e.g., Coordinated access to a shared file

 Computation speedup
 e.g., Each process uses a different core (more likely done w/ threads)

 Modularity
 e.g., Systems designed as sets of processes are modular because

one process can be easily replaced by another
 Convenience

 Some tasks are expressed naturally as sets of processes

 The means of communication for cooperating processes is
called Interprocess Communication (IPC)

 Two broad models of IPC
 Shared memory
 Message passing

Communication Models

message
passing

shared
memory

Communication Models
 Mainstream OSes (Lin, Win, Mac) implement both models
 Message-passing

 useful for exchanging small amounts of data
 simple to implement in the OS
 sometimes cumbersome for the user as code is sprinkled

with send/recv operations
 high-overhead: one syscall per communication operation

 Shared memory
 low-overhead: a few syscalls initially, and then none
 more convenient for the user since we’re used to simply

reading/writing from/to RAM
 more difficult to implement in the OS

Shared Memory
 Processes need to establish a shared memory region

 One process creates a shared memory segment
 Processes can then “attach” it to their address spaces

 Note that this is really contrary to the memory protection idea
central to multi-programming!

 Processes communicate by reading/writing to the shared
memory region

 They are responsible for not stepping on each other’s toes
 The OS is not involved at all

 The textbook has a producer/consumer example, which
you must read (Section 3.4.1)

 It’s in C, but very Java-like
 Processes read/write data in a shared buffer
 We’ll talk about producer/consumer again

Example: POSIX Shared Memory

 POSIX Shared Memory
 Process first creates shared memory segment

id = shmget(IPC_PRIVATE, size, IPC_R | IPC_W);
 Process wanting access to that shared memory must attach to it

shared_memory = (char *) shmat(id, NULL, 0);
 Now the process can write to the shared memory

sprintf(shared_memory, “hello”);
 When done a process can detach the shared memory from its

address space

shmdt(shared_memory);
 Complete removal of the shared memory segment is done with

shmctl(id, IPC_RMID, NULL);

 See posix_shm_example.c

Example: POSIX Shared Memory

 Question: How do processes find out the ID of the
shared memory segment?

 In posix_shm_example.c, the id is created before the
fork() so that both parent and child know it

 How convenient!
 There is no general solution

 The id could be passed as a command-line argument
 The id could be stored in a file
 Better: one could use message-passing to communicate the id!

 On a system that supports POSIX, you can find out the
status of IPCs with the ‘ipcs -a’ command

 run it as root to be able to see everything
 you’ll see two other forms of ipcs: Message Queues, and

Semaphores

It all seems cumbersome
 The code for using shm ipcs is pretty cumbersome

 The way to find out the id of the memory segment is clunky, at least

 This is perhaps not surprising given that we’re breaking one of
the fundamental abstractions provided by the OS: memory
isolation
 We’ll see how memory isolation is implemented and how it can be

broken for sharing memory between processes in the second part of
the semester

 Nowadays shm-type code is not very common, which is
probably a good thing
 But processes still share memory under the cover (e.g., code segments

for standard library functions)

 Sharing memory among multiple running context is done using
threads, as we’ll see in the next lecture

All of the power of shm stuff, none of the inconvenience

Message Passing
 With message passing, processes do not share any address

space for communicating
 So the memory isolation abstraction is maintained

 Two fundamental operations:
 send: to send a message (i.e., some bytes)
 recv: to receive a message (i.e., some bytes)

 If processes P and Q wish to communicate they
 establish a communication “link” between them

 This “link” is an abstraction that can be implemented in many ways
 even with shared memory!!

 place calls to send() and recv()
 optionally shutdown the communication “link”

 Message passing is key for distributed computing
 Processes on different hosts cannot share physical memory!

 But it is also very useful for processes within the same host

Implementing Message-Passing

 Let’s pretend we’re designing a kernel, and let’s
pretend we have to design the message-
passing system calls

 Let’s do this now to see how simple it can be
 I am going to show really simple, unrealistic pseudo-

code

 Let’s say we don’t want an explicit link
establishing call to keep things simple

 We have to implement two calls
 send(Q, message): send a message to process Q
 recv(Q, message): recv a message from process Q

Implementing Message-Passing
 We’ll implement communication between processes as a set of

Message objects, say, in a MessageQueue class
 We need to keep track of all MessageQueue objects so that when

process P wants to talk to process Q, we can find their
MessageQueue object

 Let’s keep track of MessageQueue objects in a
MessageQueueManager singleton (indexed by the PID of P and
Q)

 The MessageQueueManager, MessageQueue, and Message
objects are stored in the memory of the kernel
 Therefore, they can’t get too big, and a real implementation

would have to return an “out of memory” error if we use too
many bytes (e.g., many large messages sent but not received)

Implementing Message-Passing
class ProcessImplementingMessagePassing extends Process {

/* Send a message from this process (P) to process Q */

public void send(int pidProcessQ, Message message) {

int pidProcessP = getMyPid();

// Get the Queue associated to (pidProcessP, pidProcessQ)

// (getQueue() creates the Queue if it doesn't exist

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

q.putMessage(message);

}

/* Receive a message sent from process Q (identified by pidProcessQ)

public Message recv(int pidProcessQ) {

int pidProcessP = getMyPid();

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

return q.getMessage();

}

} // class ProcessImplementingMessagePassing

Implementing Message-Passing

public void send(int pidProcessQ, Message message) {

int pidProcessP = getMyPid();

// Get the Queue associated to (pidProcessP, pidProcessQ)

// (getQueue() creates the Queue if it doesn't exist

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

q.putMessage(message); // Should this make a copy of the message?

}

public Message recv(int pidProcessQ) { // what if I want to receive from anybody?

int pidProcessP = getMyPid();

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

return q.getMessage(); // should block if q is empty?

}

Message Passing Design Decisions

 There are many possible design decisions
 Fixed- or variable-length messages
 Can a link be associated to more than two processes?

 Not in our pseudo-implementation
 Can there be more than one link between two processes?

 Not in our pseudo-implementation
 Is a link uni- or bi-directional?

 In our pseudo-implementation: unidirectional
 etc.

 Let’s look at 3 questions:
 Direct or indirect communication
 Synchronous or asynchronous communication
 Automatic or explicit buffering

Direct Communication
 That’s what our pseudo-implementation did
 Processes must name each other explicitly:

 send (P, message) – send a message to process P
 receive(Q) – receive a message from process Q

 Properties of communication link
 Links are established “automatically”
 A link is associated with exactly one pair of communicating

processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

 Asymmetric communication “challenge”:
 send (P, message) – send a message to process P
 receive(&Who) – receive a message from any process,

whose identity is stored in variable Who when the call returns

Indirect Communication
 Messages transit through mailboxes (or “ports” or “doors”)

 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of the communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Primitives:
 A = createMailbox()
 send(A, message) – send a message to mailbox A
 receive(A) – receive a message from mailbox A

Indirect Communication

 The mailbox sharing issue:
 P1, P2, and P3 share mailbox A

 P1 sends; P2 and P3 receive

 Who gets the message?

 Possible solutions
 Allow a mailbox to be associated with at most two

processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily the receiver

 Perhaps notify the sender of who the receiver was

Word of Wisdom

 Designing systems requires spending (a lot of) time
discussing such issues

Decision driven by constraints and requirements
 It turns out that the definition of abstractions

(semantics and APIs) always has deep implications
 Many of which are difficult to foresee
 Many of which cause disasters

 Being good at designing good abstractions is a very
valuable skill
 Comes w/ experience and knowledge of existing systems

Synchronous/Asynchronous
 The terms blocking/non-blocking and synchronous/asynchronous

are typically used interchangeably

– In some contexts, subtle differences are made, but we can ignore them in
this course

 Message passing may be either blocking or non-blocking
 Blocking = synchronous (in OS context)

 Blocking send has the sender block until the message is received
 Blocking receive has the receiver block until a message is available
 When both are blocking, the operation is called a rendez-vous

communication style

 Non-blocking = asynchronous (in OS context)
 Non-blocking send has the sender send the message and continue

 With the option to check on status later (“was my message received?”)

 Non-blocking receive has the receiver receive a valid message or null
 With the option to block

Buffering
 While messages are in transit, they reside “in the link” (e.g.,

our MessageQueue object)
 There are three typical message queue implementations

 Zero-capacity
 There can be no waiting message
 The sender is blocked
 This enforces a “rendez-vous”

 Bounded capacity
 At most n messages can reside in the queue

 Or n message bytes

 If the queue is full, then the sender must block

 Unbounded capacity
 The sender never blocks

 There should never be anything truly unbounded though

Example: Mach Message Passing

 Section 3.5.2 in the textbook goes through a description
of mailbox-based message passing in the Mach kernel

 It’s not difficult, but make sure you read it
 Essentially, it’s a message-passing system that makes

particular choices regarding design decisions
 Consider the length/detail of a full description (already 2

pages what high-level overview in the book)
 Extra copies: big performance hit for message-passing

 At a minimum: two copies
 copy from user space to kernel space, and the reverse

 Mach uses some sort of hidden shared memory implementation
of message-passing to avoid the copies!

 Looks a bit like the POSIX shm stuff
 In general, memory copies are performance killers

Why Memory Copies?

 Let’s say you want to implement a message
passing library that’s convenient to use and
that has the following semantics:
 Once a send has been placed by a process, that

process can safely overwrite the message that
contains the data that was sent

 No need for the user to keep wondering “has it been
received yet and can I reuse/overwrite that memory?”

 The send() function returns as soon as possible
given the above semantic

 The sender should do quick sends, and then move on to
other work

 To do this, many memory copies may happen

Memory Copies Galore

User buffer

Library buffer

Kernel buffer

Library buffer

User buffer

Sender space Receiver space

Reducing Memory Copies

 Reducing the number of memory copies is a
well-known goal in system code
 So-called “zero-copy” implementations

 In our example there are 4 memory copies
 The copies from user space to kernel space

could be avoided
 If the kernel provides a send/recv abstraction that

does take only pointers, does not do any copy, and
is simply told “here is a pointer to a message but I
guarantee you that it won’t be overwritten/erased”,
then we can have a different picture, assuming that
a shared-memory region is available

Memory Copies Galore

User buffer

Library buffer

reference

User buffer

Sender space Receiver space

reference reference

shared
memory
region!

Client-Server Communication
 Applications are often structured as sets of

communication processes
 Common across machines (Web browser and Web server)
 But useful within a machine as well

 Let’s look at
 Sockets
 RPCs (Remote Procedure Calls)
 LPCs (Local PC) in WinNT (renamed ALPC (Advanced LPC)

from WinVista)
 Java RMI
 Pipes (not in book)

 Tons of other ones (named pipes, shared message
queues, CORBA, Google Web Toolkit, Apache Thrift, ...)

 The history of IPCs is huge and the number of IPC implementations/abstractions is staggering

Example: Sockets
 A socket is a data communication endpoint so that

two processes (running on the same host for “Unix or
IPC” sockets / fyi: on different hosts for “network”
sockets) can communicate.
 Socket = ip address + port number

 Sockets are typically used to communicate between
two different hosts, but also work within a host
 Most network communication in user programs is

written on top of the socket abstraction
 e.g., you’d find sockets in the code of a Web

browser
 Section 3.6.1 describes Sockets

 Something you’ll see in a networking course

Remote Procedure Calls
 So far, we’ve seen unstructured message passing

 A message is just a sequence of bytes
 It’s the application’s responsibility to interpret the meaning of those bytes

 RPC provides a procedure invocation abstraction across hosts
 A “client” invokes a procedure on a “server”, just as it invokes a local

procedure
 The magic is done by a client stub, which is code that:

 marshals arguments
 Structured to unstructured, under the cover

 sends them over to a server
 wait for the answer
 unmarshals the returned values

 Unstructured to structured, under the cover

 A variety of implementations exists
 Section 3.6.2 in the textbook covers RPC

RPC Semantics
 One interesting issue: what happens if the RPC fails

 standard procedure calls almost never fails

 Danger:
 The RPC was partially executed
 The RPC was executed multiple times due to retries that shouldn’t

have been attempted

 Weak (easy to implement) semantic: at most once
 Server maintains a time-stamp of incoming messages
 If a repeated message shows up, ignore it
 The client can be overzealous with retries
 But the server may never perform the work

 Strong (harder to implement) semantic: exactly once
 The server must send an ack to the client saying “I’ve done it”
 The client periodically retries until the ack is received

Local Procedure Calls in Win
 Windows XP uses an LPC mechanism for structured

message passing between processes on the same host
 Essentially like RPC, but just happens to be local, and

therefore doesn’t go out to the network
 Described in Section 3.5.2 / Undocumented by MS

 LPCs are not visible to the application program, but are
hidden inside the code of the Win32 library

 It’s something that system developers use, and that Win32
users use without knowing they do

 Like in Mach, a shared-memory trick is used to improve
performance for large messages and avoid memory copies

 The caller can request a shared memory region, in which
messages will be stored/retrieved and not copied back and
forth from user space to kernel space

 This is obviously not possible with RPCs

Java RMI

 RMI is essentially “RPC in Java” in an object-
oriented way

 A process in a JVM can invoke a method of
an object that lives in another JVM

Java RMI
 The great thing about RMI is that method arguments

are marshalled/unmarshalled for you by the JVM
 Objects are serialized and deserialized

 via the java.io.Serializable interface

 RMI sends copies of local objects and references to
remote objects

 See the books (and countless Java RMI tutorials) for
how to do this
 This will come in handy if you write distributed Java

systems

 RMI hides most of the gory details of IPCs
 More convenient, but not more “power” (i.e., you can do

with Sockets everything you can do with RPC)

UNIX Pipes
 Pipes are one of the most ancient, yet simple and useful, IPC

mechanisms provided by UNIX
 They’ve also been available in MS-DOS from the beginning

 In UNIX, a pipe is mono-directional
(Two named pipes (mkfifo) can be used for bidirectional communication)

 One talks of the write-end and the read-end of a pipe
 The “pipe” command-line feature, |, corresponds to a pipe
 The command “ls | grep foo” creates two processes that

communicate via a pipe
 The ls process writes on the write-end
 The grep process reads on the read-end

 An arbitrary number of pipes can be created:
 ls -R / | grep foo | grep -v bar | wc -l

 The book has C examples of how to use pipes (Section 3.6.3)

Java: Communication with an
External OS Process

 Spawning external processes using the
ProcessBuilder class
 Has a constructor that takes a command and a

list of arguments, just as if you were to run the
command in a Shell’s command line

 Creates a Process object, that can be
communicated via standard streams, which
are used for IPC

 Let’s look at ProcessBuilderExample.java
 And find out more on your own through the

JDK documentation

Java: Synchronous and
Asynchronous I/O

 I/O implemented in java.io is synchronous
 read(), readLine() wait until data is available for reading
 At this point, I’ll assume we’re all familiar with java.io

 Synchronous I/O is simple to implement but
 Difficult to avoid a process just “hanging”: should I attempt to call

readLine() knowing that I may get stuck in it for hours?
 Difficult to get data from multiple streams concurrently: should I

attempt to get data from stream A and get stuck there for 10
minutes when 1 second from now there could be data available
from stream B?

 Asynchronous I/O is implemented in java.nio
 Designed to provide lower-level access to I/O operations
 Channel + Buffer replaces Stream
 Selector for managing multiple Channels
 This is what you should use for high-performance I/O

Signals
 Signals are a UNIX form of IPC: used to notify a process that

some even has occurred
 They are some type of high-level software interrupts
 Windows emulates them with APCs (Asynchronous Procedure Calls)

 Example: on a Linux box, when you hit ^C, a SIGINT signal is
sent to a process (e.g., the process that’s currently running in
your Shell)

 They can be used for IPCs and process synchronization, but
better methods are typically preferred (especially with threads)
 Signals and threads are a bit difficult to manage together

 Once delivered to a process, a signal must be handled
 Default handler (e.g., ^C is handled by terminating)
 The user can specify that a signal should be ignored or can provide a

user-specified handler (not allowed for all signals)

Conclusion

 Communicating processes are the bases for
many programs/services

 OSes provide two main ways for processes to
communicate

 shared memory
 message-passing

 Each way comes with many variants and in many
flavors
 Sockets, RPCs, Pipes, LPCs, RMI, signals

	Inter-Process Communications (IPCs)
	Communicating Processes
	Communication Models
	Communication Models
	Shared Memory
	Example: POSIX Shared Memory
	Example: POSIX Shared Memory
	It all seems cumbersome
	Message Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Message Passing Design Decisions
	Direct Communication
	Indirect Communication
	Indirect Communication
	Word of Wisdom
	Synchronous/Asynchronous
	Buffering
	Example: Mach Message Passing
	Why Memory Copies?
	Memory Copies Galore
	Reducing Memory Copies
	Memory Copies Galore
	Client-Server Communication
	Example: Sockets
	Remote Procedure Calls
	RPC Semantics
	Local Procedure Calls in XP
	Java RMI
	Java RMI
	UNIX Pipes
	Java: Communication with an External OS Process
	Java: Synchronous and Asynchronous I/O
	Signals
	Conclusion

