
ICS332
Operating Systems

Inter-Process
Communications
(IPCs)

Communicating Processes
 Processes within a host may be independent or cooperating
 Reasons for cooperating processes:

 Information sharing
 e.g., Coordinated access to a shared file

 Computation speedup
 e.g., Each process uses a different core (more likely done w/ threads)

 Modularity
 e.g., Systems designed as sets of processes are modular because

one process can be easily replaced by another
 Convenience

 Some tasks are expressed naturally as sets of processes

 The means of communication for cooperating processes is
called Interprocess Communication (IPC)

 Two broad models of IPC
 Shared memory
 Message passing

Communication Models

message
passing

shared
memory

Communication Models
 Mainstream OSes (Lin, Win, Mac) implement both models
 Message-passing

 useful for exchanging small amounts of data
 simple to implement in the OS
 sometimes cumbersome for the user as code is sprinkled

with send/recv operations
 high-overhead: one syscall per communication operation

 Shared memory
 low-overhead: a few syscalls initially, and then none
 more convenient for the user since we’re used to simply

reading/writing from/to RAM
 more difficult to implement in the OS

Shared Memory
 Processes need to establish a shared memory region

 One process creates a shared memory segment
 Processes can then “attach” it to their address spaces

 Note that this is really contrary to the memory protection idea
central to multi-programming!

 Processes communicate by reading/writing to the shared
memory region

 They are responsible for not stepping on each other’s toes
 The OS is not involved at all

 The textbook has a producer/consumer example, which
you must read (Section 3.4.1)

 It’s in C, but very Java-like
 Processes read/write data in a shared buffer
 We’ll talk about producer/consumer again

Example: POSIX Shared Memory

 POSIX Shared Memory
 Process first creates shared memory segment

id = shmget(IPC_PRIVATE, size, IPC_R | IPC_W);
 Process wanting access to that shared memory must attach to it

shared_memory = (char *) shmat(id, NULL, 0);
 Now the process can write to the shared memory

sprintf(shared_memory, “hello”);
 When done a process can detach the shared memory from its

address space

shmdt(shared_memory);
 Complete removal of the shared memory segment is done with

shmctl(id, IPC_RMID, NULL);

 See posix_shm_example.c

Example: POSIX Shared Memory

 Question: How do processes find out the ID of the
shared memory segment?

 In posix_shm_example.c, the id is created before the
fork() so that both parent and child know it

 How convenient!
 There is no general solution

 The id could be passed as a command-line argument
 The id could be stored in a file
 Better: one could use message-passing to communicate the id!

 On a system that supports POSIX, you can find out the
status of IPCs with the ‘ipcs -a’ command

 run it as root to be able to see everything
 you’ll see two other forms of ipcs: Message Queues, and

Semaphores

It all seems cumbersome
 The code for using shm ipcs is pretty cumbersome

 The way to find out the id of the memory segment is clunky, at least

 This is perhaps not surprising given that we’re breaking one of
the fundamental abstractions provided by the OS: memory
isolation
 We’ll see how memory isolation is implemented and how it can be

broken for sharing memory between processes in the second part of
the semester

 Nowadays shm-type code is not very common, which is
probably a good thing
 But processes still share memory under the cover (e.g., code segments

for standard library functions)

 Sharing memory among multiple running context is done using
threads, as we’ll see in the next lecture

All of the power of shm stuff, none of the inconvenience

Message Passing
 With message passing, processes do not share any address

space for communicating
 So the memory isolation abstraction is maintained

 Two fundamental operations:
 send: to send a message (i.e., some bytes)
 recv: to receive a message (i.e., some bytes)

 If processes P and Q wish to communicate they
 establish a communication “link” between them

 This “link” is an abstraction that can be implemented in many ways
 even with shared memory!!

 place calls to send() and recv()
 optionally shutdown the communication “link”

 Message passing is key for distributed computing
 Processes on different hosts cannot share physical memory!

 But it is also very useful for processes within the same host

Implementing Message-Passing

 Let’s pretend we’re designing a kernel, and let’s
pretend we have to design the message-
passing system calls

 Let’s do this now to see how simple it can be
 I am going to show really simple, unrealistic pseudo-

code

 Let’s say we don’t want an explicit link
establishing call to keep things simple

 We have to implement two calls
 send(Q, message): send a message to process Q
 recv(Q, message): recv a message from process Q

Implementing Message-Passing
 We’ll implement communication between processes as a set of

Message objects, say, in a MessageQueue class
 We need to keep track of all MessageQueue objects so that when

process P wants to talk to process Q, we can find their
MessageQueue object

 Let’s keep track of MessageQueue objects in a
MessageQueueManager singleton (indexed by the PID of P and
Q)

 The MessageQueueManager, MessageQueue, and Message
objects are stored in the memory of the kernel
 Therefore, they can’t get too big, and a real implementation

would have to return an “out of memory” error if we use too
many bytes (e.g., many large messages sent but not received)

Implementing Message-Passing
class ProcessImplementingMessagePassing extends Process {

/* Send a message from this process (P) to process Q */

public void send(int pidProcessQ, Message message) {

int pidProcessP = getMyPid();

// Get the Queue associated to (pidProcessP, pidProcessQ)

// (getQueue() creates the Queue if it doesn't exist

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

q.putMessage(message);

}

/* Receive a message sent from process Q (identified by pidProcessQ)

public Message recv(int pidProcessQ) {

int pidProcessP = getMyPid();

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

return q.getMessage();

}

} // class ProcessImplementingMessagePassing

Implementing Message-Passing

public void send(int pidProcessQ, Message message) {

int pidProcessP = getMyPid();

// Get the Queue associated to (pidProcessP, pidProcessQ)

// (getQueue() creates the Queue if it doesn't exist

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

q.putMessage(message); // Should this make a copy of the message?

}

public Message recv(int pidProcessQ) { // what if I want to receive from anybody?

int pidProcessP = getMyPid();

MessageQueue q = MessageQueueManager.getQueue(pidProcessP,pidProcessQ);

return q.getMessage(); // should block if q is empty?

}

Message Passing Design Decisions

 There are many possible design decisions
 Fixed- or variable-length messages
 Can a link be associated to more than two processes?

 Not in our pseudo-implementation
 Can there be more than one link between two processes?

 Not in our pseudo-implementation
 Is a link uni- or bi-directional?

 In our pseudo-implementation: unidirectional
 etc.

 Let’s look at 3 questions:
 Direct or indirect communication
 Synchronous or asynchronous communication
 Automatic or explicit buffering

Direct Communication
 That’s what our pseudo-implementation did
 Processes must name each other explicitly:

 send (P, message) – send a message to process P
 receive(Q) – receive a message from process Q

 Properties of communication link
 Links are established “automatically”
 A link is associated with exactly one pair of communicating

processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

 Asymmetric communication “challenge”:
 send (P, message) – send a message to process P
 receive(&Who) – receive a message from any process,

whose identity is stored in variable Who when the call returns

Indirect Communication
 Messages transit through mailboxes (or “ports” or “doors”)

 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of the communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Primitives:
 A = createMailbox()
 send(A, message) – send a message to mailbox A
 receive(A) – receive a message from mailbox A

Indirect Communication

 The mailbox sharing issue:
 P1, P2, and P3 share mailbox A

 P1 sends; P2 and P3 receive

 Who gets the message?

 Possible solutions
 Allow a mailbox to be associated with at most two

processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily the receiver

 Perhaps notify the sender of who the receiver was

Word of Wisdom

 Designing systems requires spending (a lot of) time
discussing such issues

Decision driven by constraints and requirements
 It turns out that the definition of abstractions

(semantics and APIs) always has deep implications
 Many of which are difficult to foresee
 Many of which cause disasters

 Being good at designing good abstractions is a very
valuable skill
 Comes w/ experience and knowledge of existing systems

Synchronous/Asynchronous
 The terms blocking/non-blocking and synchronous/asynchronous

are typically used interchangeably

– In some contexts, subtle differences are made, but we can ignore them in
this course

 Message passing may be either blocking or non-blocking
 Blocking = synchronous (in OS context)

 Blocking send has the sender block until the message is received
 Blocking receive has the receiver block until a message is available
 When both are blocking, the operation is called a rendez-vous

communication style

 Non-blocking = asynchronous (in OS context)
 Non-blocking send has the sender send the message and continue

 With the option to check on status later (“was my message received?”)

 Non-blocking receive has the receiver receive a valid message or null
 With the option to block

Buffering
 While messages are in transit, they reside “in the link” (e.g.,

our MessageQueue object)
 There are three typical message queue implementations

 Zero-capacity
 There can be no waiting message
 The sender is blocked
 This enforces a “rendez-vous”

 Bounded capacity
 At most n messages can reside in the queue

 Or n message bytes

 If the queue is full, then the sender must block

 Unbounded capacity
 The sender never blocks

 There should never be anything truly unbounded though

Example: Mach Message Passing

 Section 3.5.2 in the textbook goes through a description
of mailbox-based message passing in the Mach kernel

 It’s not difficult, but make sure you read it
 Essentially, it’s a message-passing system that makes

particular choices regarding design decisions
 Consider the length/detail of a full description (already 2

pages what high-level overview in the book)
 Extra copies: big performance hit for message-passing

 At a minimum: two copies
 copy from user space to kernel space, and the reverse

 Mach uses some sort of hidden shared memory implementation
of message-passing to avoid the copies!

 Looks a bit like the POSIX shm stuff
 In general, memory copies are performance killers

Why Memory Copies?

 Let’s say you want to implement a message
passing library that’s convenient to use and
that has the following semantics:
 Once a send has been placed by a process, that

process can safely overwrite the message that
contains the data that was sent

 No need for the user to keep wondering “has it been
received yet and can I reuse/overwrite that memory?”

 The send() function returns as soon as possible
given the above semantic

 The sender should do quick sends, and then move on to
other work

 To do this, many memory copies may happen

Memory Copies Galore

User buffer

Library buffer

Kernel buffer

Library buffer

User buffer

Sender space Receiver space

Reducing Memory Copies

 Reducing the number of memory copies is a
well-known goal in system code
 So-called “zero-copy” implementations

 In our example there are 4 memory copies
 The copies from user space to kernel space

could be avoided
 If the kernel provides a send/recv abstraction that

does take only pointers, does not do any copy, and
is simply told “here is a pointer to a message but I
guarantee you that it won’t be overwritten/erased”,
then we can have a different picture, assuming that
a shared-memory region is available

Memory Copies Galore

User buffer

Library buffer

reference

User buffer

Sender space Receiver space

reference reference

shared
memory
region!

Client-Server Communication
 Applications are often structured as sets of

communication processes
 Common across machines (Web browser and Web server)
 But useful within a machine as well

 Let’s look at
 Sockets
 RPCs (Remote Procedure Calls)
 LPCs (Local PC) in WinNT (renamed ALPC (Advanced LPC)

from WinVista)
 Java RMI
 Pipes (not in book)

 Tons of other ones (named pipes, shared message
queues, CORBA, Google Web Toolkit, Apache Thrift, ...)

 The history of IPCs is huge and the number of IPC implementations/abstractions is staggering

Example: Sockets
 A socket is a data communication endpoint so that

two processes (running on the same host for “Unix or
IPC” sockets / fyi: on different hosts for “network”
sockets) can communicate.
 Socket = ip address + port number

 Sockets are typically used to communicate between
two different hosts, but also work within a host
 Most network communication in user programs is

written on top of the socket abstraction
 e.g., you’d find sockets in the code of a Web

browser
 Section 3.6.1 describes Sockets

 Something you’ll see in a networking course

Remote Procedure Calls
 So far, we’ve seen unstructured message passing

 A message is just a sequence of bytes
 It’s the application’s responsibility to interpret the meaning of those bytes

 RPC provides a procedure invocation abstraction across hosts
 A “client” invokes a procedure on a “server”, just as it invokes a local

procedure
 The magic is done by a client stub, which is code that:

 marshals arguments
 Structured to unstructured, under the cover

 sends them over to a server
 wait for the answer
 unmarshals the returned values

 Unstructured to structured, under the cover

 A variety of implementations exists
 Section 3.6.2 in the textbook covers RPC

RPC Semantics
 One interesting issue: what happens if the RPC fails

 standard procedure calls almost never fails

 Danger:
 The RPC was partially executed
 The RPC was executed multiple times due to retries that shouldn’t

have been attempted

 Weak (easy to implement) semantic: at most once
 Server maintains a time-stamp of incoming messages
 If a repeated message shows up, ignore it
 The client can be overzealous with retries
 But the server may never perform the work

 Strong (harder to implement) semantic: exactly once
 The server must send an ack to the client saying “I’ve done it”
 The client periodically retries until the ack is received

Local Procedure Calls in Win
 Windows XP uses an LPC mechanism for structured

message passing between processes on the same host
 Essentially like RPC, but just happens to be local, and

therefore doesn’t go out to the network
 Described in Section 3.5.2 / Undocumented by MS

 LPCs are not visible to the application program, but are
hidden inside the code of the Win32 library

 It’s something that system developers use, and that Win32
users use without knowing they do

 Like in Mach, a shared-memory trick is used to improve
performance for large messages and avoid memory copies

 The caller can request a shared memory region, in which
messages will be stored/retrieved and not copied back and
forth from user space to kernel space

 This is obviously not possible with RPCs

Java RMI

 RMI is essentially “RPC in Java” in an object-
oriented way

 A process in a JVM can invoke a method of
an object that lives in another JVM

Java RMI
 The great thing about RMI is that method arguments

are marshalled/unmarshalled for you by the JVM
 Objects are serialized and deserialized

 via the java.io.Serializable interface

 RMI sends copies of local objects and references to
remote objects

 See the books (and countless Java RMI tutorials) for
how to do this
 This will come in handy if you write distributed Java

systems

 RMI hides most of the gory details of IPCs
 More convenient, but not more “power” (i.e., you can do

with Sockets everything you can do with RPC)

UNIX Pipes
 Pipes are one of the most ancient, yet simple and useful, IPC

mechanisms provided by UNIX
 They’ve also been available in MS-DOS from the beginning

 In UNIX, a pipe is mono-directional
(Two named pipes (mkfifo) can be used for bidirectional communication)

 One talks of the write-end and the read-end of a pipe
 The “pipe” command-line feature, |, corresponds to a pipe
 The command “ls | grep foo” creates two processes that

communicate via a pipe
 The ls process writes on the write-end
 The grep process reads on the read-end

 An arbitrary number of pipes can be created:
 ls -R / | grep foo | grep -v bar | wc -l

 The book has C examples of how to use pipes (Section 3.6.3)

Java: Communication with an
External OS Process

 Spawning external processes using the
ProcessBuilder class
 Has a constructor that takes a command and a

list of arguments, just as if you were to run the
command in a Shell’s command line

 Creates a Process object, that can be
communicated via standard streams, which
are used for IPC

 Let’s look at ProcessBuilderExample.java
 And find out more on your own through the

JDK documentation

Java: Synchronous and
Asynchronous I/O

 I/O implemented in java.io is synchronous
 read(), readLine() wait until data is available for reading
 At this point, I’ll assume we’re all familiar with java.io

 Synchronous I/O is simple to implement but
 Difficult to avoid a process just “hanging”: should I attempt to call

readLine() knowing that I may get stuck in it for hours?
 Difficult to get data from multiple streams concurrently: should I

attempt to get data from stream A and get stuck there for 10
minutes when 1 second from now there could be data available
from stream B?

 Asynchronous I/O is implemented in java.nio
 Designed to provide lower-level access to I/O operations
 Channel + Buffer replaces Stream
 Selector for managing multiple Channels
 This is what you should use for high-performance I/O

Signals
 Signals are a UNIX form of IPC: used to notify a process that

some even has occurred
 They are some type of high-level software interrupts
 Windows emulates them with APCs (Asynchronous Procedure Calls)

 Example: on a Linux box, when you hit ^C, a SIGINT signal is
sent to a process (e.g., the process that’s currently running in
your Shell)

 They can be used for IPCs and process synchronization, but
better methods are typically preferred (especially with threads)
 Signals and threads are a bit difficult to manage together

 Once delivered to a process, a signal must be handled
 Default handler (e.g., ^C is handled by terminating)
 The user can specify that a signal should be ignored or can provide a

user-specified handler (not allowed for all signals)

Conclusion

 Communicating processes are the bases for
many programs/services

 OSes provide two main ways for processes to
communicate

 shared memory
 message-passing

 Each way comes with many variants and in many
flavors
 Sockets, RPCs, Pipes, LPCs, RMI, signals

	Inter-Process Communications (IPCs)
	Communicating Processes
	Communication Models
	Communication Models
	Shared Memory
	Example: POSIX Shared Memory
	Example: POSIX Shared Memory
	It all seems cumbersome
	Message Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Implementing Message-Passing
	Message Passing Design Decisions
	Direct Communication
	Indirect Communication
	Indirect Communication
	Word of Wisdom
	Synchronous/Asynchronous
	Buffering
	Example: Mach Message Passing
	Why Memory Copies?
	Memory Copies Galore
	Reducing Memory Copies
	Memory Copies Galore
	Client-Server Communication
	Example: Sockets
	Remote Procedure Calls
	RPC Semantics
	Local Procedure Calls in XP
	Java RMI
	Java RMI
	UNIX Pipes
	Java: Communication with an External OS Process
	Java: Synchronous and Asynchronous I/O
	Signals
	Conclusion

