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Definition
 A process is a program in execution

 program: passive entity (bytes stored on disk as part of an
executable file)

 becomes a process when it’s loaded in memory

 Multiple processes can be associated to the same program
 on a multi-user node (aka shared server) each user may start an

instance of the same application (e.g., a text editor, the Shell)
 A user can often start multiple instances of the same program

 A running system consists of multiple processes
 OS processes: Processes started by the OS to do “system things”

 Not everything’s in the kernel after all (e.g., ssh daemon)

 User processes
 Execute user code, with the possibility of executing kernel code by going to

kernel mode through system calls

 “job” and “process” are used interchangeably in OS texts 



Definition

 What is in a process?
 Other way to think about it: what needs to

be in memory/registers to fully define the
state of  a running program?



Definition
 Process =

 code (also called the text)
 initially stored on disk in an executable file

 program counter
 points to the next instruction to execute (i.e., an address

in the code)
 content of the processor’s registers
 a runtime stack
 a data section

global variables (.bss (uninitialized static variables) and
.data (initialized global variables and static local variables)
in x86 assembly)

 a heap
 for dynamically allocated memory (malloc, new, etc.)



Process Address Space
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“Review”: The Stack

 The runtime stack is
 A stack on which items can be pushed or popped
 The items are called activation records
 The stack is how we manage to have programs

place successive function/method calls
 The management of the stack is done entirely on

your behalf by the compiler
 Unless you took ICS312, in which case you saw how

to manage the stack by hand (fun?)

 An activation record contains all the
“bookkeeping” necessary for placing and
returning from a function/method call



“Review”: Activation Record

 Any function needs to have some “state” so that it
can run
 The address of the instruction that should be executed

once the function returns: the return address
 Parameters passed to it by whatever function called it
 Local variables
 The value that it will return

 Before calling a function, the caller needs to also
save the state of its registers

 All the above goes on the stack as part of
activation records, which grows downward



Sample Runtime Stack

 main() calls func(), which calls print()

a.r. for main()

a.r. for func()

a.r. for print()



Sample Runtime Stack

 print() returns

a.r. for main()

a.r. for func()



Sample Runtime Stack

 func() calls add(), which calls g()

a.r. for main()

a.r. for func()

a.r. for add()

a.r. for g()



Sample Runtime Stack

 g() calls h()

a.r. for main()

a.r. for func()

a.r. for add()

a.r. for g()

a.r. for h()



Runtime Stack Growth

 The mechanics for pushing/popping are more
complex than one may think and pretty interesting
(take ICS312)

 The longer the call sequence, the larger the stack
 Especially with recursive calls!!

 The stack can get too large
 Hits some system-specified limit
 Hits the heap

 The famous “runtime stack overflow” error
 Causes a trap, that will trigger the Kernel to terminate

your process with that error
 Typically due to infinite recursion



2 Processes for 1 Program
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Single- and Multi-Tasking
 OSes used to be single-tasking: only one process can be in

memory at a time
 MS-DOS is the best known example

 A command interpreter is loaded upon boot
 When a program needs to execute, no new process is created
 Instead the program’s code is loaded in memory by the command

interpreter, which overwrites part of itself with it!
 Memory used to be very scarce

 The instruction pointer is set to the 1st instruction of the program
 The small left-over portion of the interpreter resumes after the

program terminates and produces an exit code
 This small portion re-loads the full code of the interpreter from disk

back into memory
 The full interpreter resumes and provides the user with his/her

program’s exit code



Single-Tasking with MS-DOS
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Multi-Tasking (Multi-Programming)

 Modern OSes support
multi-tasking: multiple
processes can co-exist
in memory

 To start a new
program, the OS
simply creates a new
process (via a system-
call called fork() on a
UNIX system)
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Kernel Stack?
 Within the kernel, the code calls a series of functions
 Important: the kernel has a fixed-size stack

 It is not very large (e.g., 4KB to 16KB)                → ulimit -s
 When writing kernel code, there is no such thing as allocating tons

of temporary variables, or calling tons of nested functions each with
tons of arguments

 That’s a luxury only allowed in user space
 There are many such differences between user-space

development and kernel-space development
 Example of another difference: when writing kernel code, one

doesn’t have access to the standard C library!
 Chicken-and-egg problem
 Would be inefficient anyway

 So the kernel re-implements some useful functions
 e.g., printk() replaces printf() and is implemented in the kernel source

 And yes, the Linux kernel is written in C



Process State

 As a process executes, it may be in various
states

 These states are defined by the OS, but most
OSes use (at least) the states below



Process Control Block
 The OS keeps track of processes in a data structure, the

process control block (PCB), which contains:
 Process state
 Process ID (aka PID)
 Program counter and CPU registers contents

 when saved, allow a process to be restarted later
 CPU-scheduling info

 priority, queue, ... (see future lecture “Scheduling”)
 Memory-management info

 base and limit registers, page table, ... (see future lectures
“Main Memory” and “Virtual Memory”)

 Accounting info
 amount of resources used so far, ...

 I/O status info
 list of I/O devices allocated to the process, open files, ...



Process Control Block
 Figure from the book

 The reality is of course a bit messier
 include/linux/sched.h  (look up “task_struct {”)
 See page 110 in the textbook



The Kernel’s “Process Table”
 The Kernel keeps around all the PCB in its memory,

in a data structure often called the Process Table
 Because Kernel size must be bounded, the Process

Table size is also bounded
 Based on a configuration parameter of the kernel, but you

can’t set it to infinity

 Therefore the Process Table can fill up!
 If you keep creating processes that don’t terminate,

eventually you won’t be able to create new processes
 And your system will be in trouble

 It’s very easy to write code that does this
 Called a “fork bomb” (see upcoming slides)



Disclaimer for what Follows
 In all that follows we assume a single-CPU system
 The book talks about threads, and talks about schedulers and

other things in Chapter 3
 The author tends to keep giving preview of future chapters
 I chose to not give too many previews
 You may skip that content in the book until a future lecture

 as mentioned in the reading assignment on the web site

 Important: with the above assumptions, only one process is
executed by the CPU at a time

 Multiple processes may be loaded in memory
 But only one is in the “Running” state
 All others are, e.g., in the “Ready” state

 The OS gives the CPU to a process for a limited amount of
time, then gives it to another process, and so on



Switching between Processes



Switching between Processes
 This switching is called context switching

 The context is the state of the running process
 Context-switching time is pure overhead

 While it happens processes do not do useful work
 Therefore it should be fast

 No more than a few microseconds, and hopefully less
 The hardware can help

 e.g., save all registers in a single instruction
 e.g., multiple register sets

 Switching between register sets is done with a simple instruction
 If more processes than register sets, then revert to the usual

save/restore

 Context switching is the mechanism. The policy is called
scheduling

 See future lecture



Process Creation
 A process may create new

processes, in which case it
becomes a parent

 We obtain a tree of processes
 Each process has a pid

 ppid refers to the parent’s pid

 Example tree, on Solaris

 ps axlw  on a Mac OSX
system gives the “tree” (ps
faux / ps --forest -eaf)



Process Creation
 The child may inherit/share some of the resources of its

parent, or may have entirely new ones
 Many variants are possible and we’ll look at what Linux does

 A parent can also pass input to a child
 Upon creation of a child, the parent can either

 continue execution, or 
 wait for the child’s completion

 The child could be either
 a clone of the parent (i.e., have a copy of the address

space), or 
 be an entirely new program

 Let’s look at process creation in UNIX / Linux
 You can read the corresponding man pages

 “man 2 command” or “man 3 command”



The fork() System Call

 fork() creates a new process
 The child is a copy of the parent, but...

 It has a different pid (and thus ppid)
 Its resource utilization (so far) is set to 0

 fork() returns the child’s pid to the parent,
and 0 to the child
 Each process can find its own pid with the

getpid() call, and its ppid with the getppid() call
 Both processes continue execution after

the call to fork()



fork() Example
pid = fork();
if (pid < 0) {
  fprintf(stdout,”Error: can’t fork()\n”);
  perror(“fork()”);
} else if (pid != 0) {
  fprintf(stdout,”I am the parent and my child has pid %d\n”,pid);
  while (1);
} else {
  fprintf(stdout,”I am the child, and my pid is %d\n”, getpid());
  while (1) ;
}

 You should _always_ check error codes (as above for fork())
 in fact, even for fprintf, although that’s considered overkill
 I don’t do it here for the sake of brevity (see sources on the Web site)

fork_example1.c



fork() and Memory
 What does the following code print?

   
   int a = 12;
   if (pid = fork()) { // PARENT
    sleep(10);  // ask the OS to put me in Waiting

fprintf(stdout,”a = %d\n”,a);
while (1);

   } else {  // CHILD
a += 3;
while (1);

   }
  

fork_example2.c



fork() and Memory
 What does the following code print?

   
   int a = 12;
   pid = fork();
   if (pid != 0) {
    sleep(10);  // ask the OS to put me in Waiting

fprintf(stdout,”a = %d\n”,a);
while (1);

   } else {
a += 3;
while (1);

   }
  

Answer: 12

fork_example2.c



fork() and Memory
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fork() and Memory
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fork() and Memory
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fork() can be confusing

 How many times does this code print
“hello”?

pid1 = fork();

fprintf(stdout,”hello\n”);

pid2 = fork();

fprintf(stdout,”hello\n”);

fork_example3.c



fork() can be confusing

 How many times does this code print
“hello”?

pid1 = fork();

fprintf(stdout,”hello\n”);

pid2 = fork();

fprintf(stdout,”hello\n”);

fork_example3.c

Answer: 6 times



Fork bombs...

● C:
int main() {

     while (1) {  fork(); }
}

● Bash:

:(){ :|: & };:

● Limit the number of processes by user

ulimit -u <maximum number of processes>



The exec() Family of Syscalls
 The “exec” system call replaces the process image by that of

a specific program
 see “man 3 exec” to see all the versions

 Essentially one can specify:
 path for the executable
 command-line arguments to be passed to the executable
 possibly a set of environment variables

 An exec() call returns only if there was an error
 Example in the book: Figure 3.10
 Typical example (note the argv[0] value!!!)

if (fork() == 0) {  // runs ls
char *const argv[] = {“ls”, “-l”,”/tmp/”,NULL};
execv(“/bin/ls”, argv);

}
exec_example.c



Process Terminations

 A process terminates itself with the exit()
system call
 This call takes as argument an integer that is

called the process’ exit/return/error code
 All resources of a process are deallocated

by the OS
 physical and virtual memory, open files, I/O

buffers, ...
 A process can cause the termination of

another process
 Using something called “signals” and the kill()

system call



wait() and waitpid()

 A parent can wait for a child to complete
 The wait() call 

 blocks until any child completes
 returns the pid of the completed child and the child’s

exit code

 The waitpid() call
 blocks until a specific child completes
 can be made non-blocking

 Let’s look at wait_example1.c and
wait_example2.c on the Web site

 Read the man pages (“man waitpid”)



Processes and Signals
 A process can receive signals, i.e., software interrupts

 It is an asynchronous event that the program must act upon, in
some way

 Signals have many usages, including process synchronization
 We’ll see other, more powerful and flexible process

synchronization tools
 The OS defines a number of signals, each with a name and a

number, and some meaning
 See /usr/include/sys/signal.h  or “man 7 signal”

 Signals happen for various reasons
 ^C on the command-line sends a SIGINT signal to the running

command
 A segmentation violation sends a SIGBUS signal to the running

process
 A process sends a SIGKILL signal to another



Manipulating Signals

 Each signal causes a default behavior in the process
 e.g., a SIGINT signal causes the process to terminate

 But most signals can be either ignored or provided
with a user-written handler to perform some action

 Signals like SIGKILL and SIGSTOP cannot be ignored or
handled by the user, for security reasons

 The signal() system call allows a process to specify
what action to do on a signal:

 signal(SIGINT, SIG_IGN); // ignore signal
 signal(SIGINT, SIG_DFL); // set behavior to default
 signal(SIGINT, my_handler);// customize behavior

 handler is as:  void my_handler(int sig) { ... }

 Let’s look at a small example of a process that
ignores SIGINT



Signal Example

#include <signal.h>
#include <stdio.h>

void handler(int sig) {
fprintf(stdout,”I don’t want to die!\n”);

    return;
}

main() {
    signal(SIGINT, handler);
    while(1); // infinite loop
}

signal_example.c



They’re dead.. but alive!
 When a child process terminates, it remains as a zombie   

             in an “undead” state (until it is “reaped” by the OS)
 Rationale: the child’s parent may still need to place a call

to wait(), or a variant, to retrieve the child’s exit code
 The OS keeps zombies around for this purpose

 They’re not really processes, they do not consume
resources

 They only consume a slot in the OS’s “process table”
 Which may eventually fill up and cause fork() to fail

 Let's look at zombie_example.c on the Web site
 A zombie lingers on until:

 its parent has called wait() for the child, or
 its parent dies

 It is bad practice to leave zombies around unnecessarily



Getting rid of zombies

 When a child exits, a SIGCHLD signal is
sent to the parent

 A typical way to avoid zombies altogether:
 The parent associates a handler to SIGCHLD
 The handler calls wait()
 This way all children deaths are

“acknowledged”
 See nozombie_example.c on the Web site



Orphans
 An orphan process is one whose parent has died
 In this case, the orphan is “adopted” by the process with pid 1

 init on a Linux system / launchd on a Mac OS X system

 The process with pid 1 does handle child termination with a handler for
SIGCHLD that calls wait (just like in the previous slide!)

 Therefore, an orphan never becomes a zombie
 “Trick” to fork a process that’s completely separate from the parent (with no

future responsibilities): create a grandchild and “kill” its parent
if (!fork()) { // code of the child

if (!fork()) {  // code of the grandchild, adopted by pid=1

  . . .

  exit(0); // will be reaped by process pid=1

   } 

 exit(0); // will be reaped by the parent

} else {  // code of the parent

wait(NULL);   // wait for the child to exit

}

orphan_example1.c
orphan_example2.c



In a Nutshell



What about Windows?
 See example in Figure 3.11
 In Windows, the CreateProcess() call combines fork()

and exec()
 Separation of fork() and exec() allows many clever “tricks”

in UNIX, which are not possible in Windows
 See also the spawn() functions family

 In Win32 fashion, calls have many arguments
 There is an equivalent to wait(): WaitForSingleObject()
 TerminateProcess() is like kill()

 So, overall, it allows for the same capabilities (which
shouldn’t be surprising), but with a different flavor
 Developers are really opinionated about this



Nowadays because of threads fork() may
seem useless without exec()

More about Threads in the lecture about them

… google-chrome vs firefox

Fork() with no exec() nowadays?



Processes in Java
 In this course you’ll write Java code
 What about Java and processes?
 The JVM doesn’t implement a Process abstraction

similar to C, meaning that there is no notion of
running multiple processes within the JVM
 Partly because supporting several independent

address spaces in the JVM is a pain
 It’s is however possible to create an “external

process” that lives outside the JVM
 Communication is via data streams
 We’ll see this in a future lecture



Conclusion
 Processes are running programs
 OSes provides a rich set of abstractions and system

calls to deal with processes
 Make sure you understand all the examples
 Even better if you experiment yourself by compiling/playing

with them

 In Java, one can only create external “OS” processes
 Multiple independent execution entities in the JVM must be

threads
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