
ICS332
Operating Systems

Threads

Definition

Concurrent computing: several
computations are performed during
overlapping time periods (concurrent
instead of sequential)

Concurrent ⊊ Parallel
 Concurrency: Property of a program that can do

multiple things at the same time
More details? => ICS432

Definition
 A thread is a basic unit of CPU utilization within a process
 Multi-threaded process: Concurrent execution of

different parts of the same program
 Each thread has its own

 thread ID
 program counter
 register set
 stack

 It shares the following with other threads within the same
process

 code section
 data section
 the heap (dynamically allocated memory)
 open files and signals

The Typical Figure

A More Detailed Figure

process

(shared) code

(shared) address space

program counter

st
ac

k

program counter

st
ac

k

program counter

st
ac

k

method f method g

global variable

Multi-Threaded Program
 Source-code view

 a blue thread
 a red thread
 a green thread

Advantages of Threads?

 Economy:
 Creating a thread is cheap

 Slightly cheaper than creating a process under MacOSX / Linux
 Much cheaper than creating a process under Windows (createProcess)

 Context-switching between threads is cheap
 Usually cheaper than between processes

 Resource Sharing:
 Threads naturally share memory

 With processes you have to use possibly complicated
IPC (e.g., Shared Memory Segments)

 Having concurrent activities in the same address
space is very powerful

 But fraught with danger

Advantages of Threads?
 Responsiveness

 A program that has concurrent activities is more
responsive

 While one thread blocks waiting for some event, another
can do something

 e.g. Spawn a thread to answer a client request in a client-
server implementation

 This is true of processes as well, but with threads we
have better sharing and economy

 Scalability
 Running multiple “threads” at once uses the machine

more effectively
 e.g., on a multi-core machine

 This is true of processes as well, but with threads we
have better sharing and economy

Drawbacks of Threads

 One drawback of thread-based
concurrency compared to process-based
concurrency: If one thread fails (e.g., a
segfault), then the process fails
 And therefore the whole program

 This leads to process-based concurrency
 e.g., The Google Chrome Web browser
 See

http://www.google.com/googlebooks/chrome/
 Sort of a throwback to the pre-thread era

 Threads have been available for 20+ years
 Very trendy recently due to multi-core architectures

Drawbacks of Threads

 Threads may be more memory-
constrained than processes
 Due to OS limitation of the address space size

of a single process
 Threads do not benefit from memory

protection
 Concurrent programming with Threads is hard

 But so is it with Processes and Shared Memory
Segments

 We will see this a bit in this course, and much
more in ICS432

Threads on My Machine?

 Let’s run ps uxM (or ps -f -m x) and look at
several applications
 …

 Let’s compute the thread/process ratio on
my machine
 Parsing the ps output using sed, for instance

Multi-Threading Challenges

 Typical challenges of multi-threaded
programming
 Dividing activities among threads
 Balancing load among threads
 Split data among threads
 Deal with data dependency and synchronization
 Testing and debugging

 Take ICS432 if you want maximum exposure to
these
 Section 4.2 talks a little bit about this
 Note that you’ll most likely all write multi-threaded

code on multi-core architectures

User Threads vs. Kernel Threads

 Threads can be supported solely in User Space
 Threads are managed by some user-level thread

library (e.g., Java Green Threads)
(i.e.: you can implement your own threads management system and the OS
will not know about it)

 Threads can also be supported in Kernel Space
 The kernel has data structure and functionality to

deal with threads
 Most modern OSes support kernel threads

 In fact, Linux doesn’t really make a difference
between processes and threads (same data
structure)

Many-to-One Model
 Advantage: multi-threading is

efficient and low-overhead
 No syscalls to the kernel

 Major Drawback #1: cannot take
advantage of a multi-core
architecture!

 Major Drawback #2: if one
threads blocks, then all the
others do!

 Examples (User-level Threads):
 Java Green Threads
 GNU Portable Threads

One-to-One Model

 Removes both drawbacks of the Many-to-One Model
 Creating a new threads requires work by the kernel

 Not as fast as in the Many-to-One Model

 Example:
 Linux
 Windows
 Solaris 9 and later

Many-to-Many Model
 A compromise
 If a user thread blocks, the

kernel can create a new kernel
threads to avoid blocking all user
threads

 A new user thread doesn’t
necessarily require the creation
of a new kernel thread

 True concurrency can be
achieved on a multi-core
machine

 Examples:
 Solaris 9 and earlier
 Win NT/2000 with the

ThreadFiber package

Two-Level Model

 The user can say: “Bind this thread to its own kernel thread”

 Example:
 IRIX, HP-UX, Tru64 UNIX
 Solaris 8 and earlier

Thread Libraries

 Thread libraries provide users with ways to
create threads in their own programs
 In C/C++: Pthreads

 Implemented by the kernel

 In C/C++: OpenMP
 A layer above Pthreads for convenient

multithreading in “easy” cases

 In Java: Java Threads
 Implemented by the JVM, which relies on threads

implemented by the kernel

Java Threads

 All memory-management headaches go
away with Java Threads
 In nice Java fashion

 Several programming languages have long
provided constructs/abstractions for writing
concurrent programs
 Modula, Ada, etc.

 Java does it like it does everything else, by
providing a Thread class
 You create a thread object
 Then you can start the thread

Extending the Thread class (All Java)

 To create a thread, you can extend the
Thread class and override its “run()”
method

class MyThread extends Thread {
 public void run() {
 . . .
 }
 . . .
}

MyThread t = new MyThread();

Implementing the Runnable interface (All Java)

 To create a thread, you can implement the
Runnable interface and its “run()” method

class MyStuff implements Runnable {
 public void run() {
 . . .
 }
 . . .
}

MyThread t = new Thread(new MyStuff());

Implementing the Callable interface (Java1.5+)

 Implement the Callable interface and its
“call()” method

 Adds a return type to call() and checked exceptions!

class MyBetterStuff implements Callable<Long> {
 public Long call() throws Exception {
 . . .

 return someLong;
 }
 . . .
}
ExecutorService executor = Executors.newFixedThreadPool(4);
executor.submit(new MyBetterStuff());

Example

public class MyThread extends Thread {
 public void run() {
 for (int i=0; i<10; i++) {
 System.out.println(“Hello world #“+i);
 }
 }
 . . .
}

myThread t = new MyThread();

Spawning a Thread/Runnable

 To launch, or spawn, a thread, you just call
the (encapsulating) thread’s start() method

 WARNING: Don’t call the run() method
directly to launch a thread
 If you call the run() method directly, then you

just call some method of some object, and the
method executes

 Fine, but probably not what you want
 The start() method, which you should not

override, does all the thread launching
 It launches a thread that starts its execution by

calling the run() method

Example
public class MyThread implements Runnable {
 public void run() {
 for (int i=0; i<5; i++) {
 System.out.println(“Hello world #“+i);
 }
 }
}

public class MyProgram {
 public MyProgram() {
 MyThread t = new Thread(new MyThread());
 t.start();
 }
 public static void main(String args[]) {
 MyProgram p = new MyProgram();
 }
}

Example
public class MyThread implements Callable<Integer> {W
 public Integer call() throws Exception {
 for (int i=0; i<5; i++) {
 System.out.println(“Hello world #“+i);
 }
 Thread.sleep(10000);

return 42;
 }
}

public class MyProgram {
 public static void main(String args[]) {
 ExecutorService executor = Executors.newFixedThreadPool(4);
 Future<Long> future = executor.submit(new MyThread());
 long value = future.get();
 //... and after 10000 ms, value is 42
 }
}

What happens
 The previous program runs as a Java process

 that is, a thread running inside the JVM
 When the start() method is called, the main thread

creates a new thread
 We now have two threads

 The “main”, “original” thread
 The newly created thread

 Both threads are running
 The main thread doesn’t do anything
 The new thread prints messages to screen and exits

 When both threads terminate, the process
terminates

 Let’s have the first thread do something as well...

Example
public class myThread extends Thread {
 public void run() {
 for (int i=0; i<5; i++)
 System.out.println(“Hello world #“+i);
 }
}

public class MyProgram {
 public MyProgram() {
 MyThread t = new MyThread();
 t.start();
 for (int i=0; i<5; i++)
 System.out.println(“Beep ”+i);
 }
 public static void main(String args[]) {
 MyProgram p = new MyProgram();
 }
}

What happens?

 Now we have the main thread printing to the
screen and the new thread printing to the
screen

 Question: what will the output be?
 Answer: Impossible to tell for sure

 If you know the implementation of the JVM on your
particular machine, then you may be able to tell

 But if you write this code to be run anywhere, then
you can’t expect to know what happens

 Let’s look at what happens on my laptop for a
program in which on thread prints “#” and the
other prints “.” 1000 times each

Three Sample Output

 Non-deterministic execution
 Somebody decides when a thread runs

 You run for a while, now you run for a while, ...

 This is called thread scheduling

Thread Programming

 Major Challenge: You cannot make any
assumption about thread scheduling

 Here is an example with C on Linux (no JVM)

 Major Difficulty: you may not be able to reproduce a
bug because each execution is different!

The getState() method
 The possible thread states are

 NEW: A thread that hasn’t been started yet
 RUNNABLE: The thread can be run, and may be running as

we speak
 It might not because another runnable thread could be running

 BLOCKED: The thread is blocked on a monitor
 See future lecture

 WAITING: The thread is waiting for another thread to do
something

 e.g., join()
 TIMED_WAITING: The thread is waiting for another thread to

do something, but will give up after a specified time out
 e.g., join()

 TERMINATED: The thread’s run method has returned

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

synchronization
sleep, timed-join

join

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

synchronized
time elapsed
waiting done

synchronization
sleep, timed-join

join

Thread Lifecycle: 4 states

RUNNABLE

running not
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

synchronized
time elapsed
waiting done

run() method
returns

synchronization
sleep, timed-join

join

Thread Scheduling
 The JVM keeps track of threads, enacts the thread

state transition diagram
 Question: who decides which runnable thread to run?
 Old versions of the JVM used only Green Threads

 User-level threads implemented by the JVM
 Invisible to the O/S

JVMO/S

scheduler
thread

application
threads

Beyond Green Threads

 Green threads have all the disadvantages
of user-level threads (see earlier)
 Most importantly: Cannot exploit multi-core,

multi-processor architectures

 The JVM now provides native threads
 Green threads are typically not available

anymore (in Java)
 you can try to use “java -green” and see what

your system says

 Languages using green threads: Erlang, go...

Java Threads / Kernel Threads

 In modern JVMs, application threads are
mapped to kernel threads

O/S

scheduler
thread

application
threads

JVM

Java Threads / Kernel Threads
 This gets a bit complicated

 The JVM has a thread scheduler for application threads,
which are mapped to kernel threads

 The O/S also schedules kernel threads
 Several application threads could be mapped to the same

kernel thread!

 The JVM is itself multi-threaded!
 We have threads everywhere

 Application threads in the JVM
 Kernel threads that run application threads
 Threads in the JVM that do some work for the JVM

 Let’s look at a running JVM for a program that runs
nothing but an infinite loop...

So what?
 At this point, it seems that we throw a bunch of threads in,

and we don’t really know what happens
 To some extent it’s true, but we have ways to have some

control
 In particular, what happens in the RUNNABLE state?

RUNNABLE

running not
running

 Can we control how multiple RUNNABLE threads become
running or not running?

The yield() method: example
public class MyThread extends Thread {
 public void run() {
 for (int i=0; i<5; i++) {
 System.out.println(“Hello world #“+i);
 Thread.yield();
 }
 }
}

public class MyProgram {
 public MyProgram() {
 MyThread t = new MyThread();
 t.start();
 for (int i=0; i<5; i++) {
 System.out.println(“foo”);
 Thread.yield();
 }
 }
 public static void main(String args[]) {
 MyProgram p = new MyProgram();
 }
}

 With the yield()
method, a thread
will pause and give
other RUNNABLE
threads the
opportunity to
execute for a while

Example Execution

 The use of yield made
the threads’ executions
more interleaved

 Switching between
threads is more frequent

 But it’s still not
deterministic!

 Programs should
NEVER rely on yield()
for correctness

 yield() is really a “hint” to
the JVM

Thread Priorities

 The Thread class has a setPriority() and a
getPriority() method
 A new Thread inherits the priority of the thread

that created it

 Thread priorities are integers ranging
between Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY
 The higher the integer, the higher the priority

What will happen to my threads?

 The Java programmer can give hints to the JVM about what
the threads should share CPU resources

 The JVM implements various scheduling policies, that look
like those in the Kernel
 See next set of lecture notes

 The JVM provides hints to the kernel about how the threads
should share CPU resources

 The kernel implements possibly complex scheduling policies
 In the end

 The programmer tries to influence the JVM
 The JVM tries to influence the kernel
 The Kernel ultimately decides

 Conclusion: you can never know exactly how your threads
will share CPU resources
 Hence non-deterministic executions

The join() method

 The join() method causes a thread to wait for
another thread’s termination

 This is useful for “dispatching” work to a worker
thread and waiting for it to be done

 Example:

Thread t = new MyThread();

 t.start();

 ...

 try { t.join(); } catch (InterruptedException e) { ... }

...

The Runnable Interface

 What if you want to create a thread that extends
some other class?

 e.g., a multi-threaded applet is at the same time a
Thread and an Applet

 Before Java8, Java did not allow for multiple
inheritance

 Which is why it has the concept of interfaces
 So another way to create a thread is to have

runnable objects
 It’s actually the most common approach

 Allows to add inheritance in a slightly easier way after
the fact

 Let’s see this on an example

Runnable Example
public class RunnableExample {

 class MyTask implements Runnable {
 public void run() {
 for (int i=0; i<50; i++)
 System.out.print("#");
 }
 }
 public RunnableExample() {
 Thread t = new Thread(new MyTask());
 t.start();
 for (int i=0; i<50; i++)
 System.out.println(".");
 }
 public static void main(String args[]) {
 RunnableExample p = new RunnableExample();
 }
}

Extends vs. Implement?

 We have seen two options:
 Option #1: “extends Threads”
 Option #2: “implements Runnable”

 Almost always, option #2 above is preferable
since you never know when you'll have to extend
a class

 Most Java APIs and documentation talk about
“Runnable objects”

 For this class it's up to you, but I suggest sticking
to “implements Runnable”

 2016 update :) BETTER: implements Callable<V>

Safe Thread Cancellation
 One potentially useful feature would be for a thread to simply

terminate another thread
 Two possible approaches:

 Asynchronous cancellation
 One thread terminates another immediately

 Deferred cancellation
 A thread periodically checks whether it should terminate

 The problem with asynchronous cancellation:
 may lead to an inconsistent state or to a synchronization problem if

the thread was in the middle of “something important”
 Absolutely terrible bugs lurking in the shadows

 The problem with deferred cancellation: the code is cumbersome
due to multiple cancellation points

 should I die? should I die? should I die?
 In Java, the Thread.stop() method is deprecated, and so

cancellation has to be deferred

Java Thread Recap

 Two ways to create threads
 extends Thread
 implements Runnable / Callable

 You should never just “kill” a thread
 Instead have the thread ask “should I die now?”

regularly

 The book has a entire Java example you should
study (fig. 4.12)

 Many more fascinating “features” (ICS432)

Signals
 We’ve talked about signals for processes

 Signal handlers are either default or user-specified
 signal() and kill() are the system calls

 In a multi-threaded program, what happens?
 Multiple options

 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals

 Most UNIX versions: a thread can say which signals it accepts and
which signals it doesn’t accept

 On Linux: dealing with threads and signals is tricky but well
understood with many tutorials on the matter and man pages

 man pthread_sigmask
 man sigemptyset
 man sigaction

Fork()

 What happens when a thread calls fork()?
 Two possibilities:

 A new process is created that has only one thread
(the copy of the thread that called fork()), or

 A new process is created with all threads of the
original process (a copy of all the threads,
including the one that called fork())

 Some OSes provide both options
 In Linux the first option above is used

 If one calls exec() after fork(), all threads are
“wiped out” anyway

Win XP Threads

 Win XP uses one-to-one mapping
 Many-to-Many via a separate library

 A thread’s defined by its context
 An ID
 A register set
 A user stack and a kernel stack

 For user mode and kernel mode

 A private storage area for convenience

 The OS keeps track of threads in data
structures, as see in the following figure

Win XP Threads

Linux Threads

 Linux does not distinguish between processes
and threads: they’re called tasks

 Kernel data structure: task_struct

 The clone() syscall is used to create a task
 Allows to specify what the new task shares with its

parent
 Different flags lead to something like fork() or like

pthread_create()

Conclusion

 Threads are something you cannot ignore today
 Multi-core programming

 Programming with threads is known to be
difficult, and a lot of techniques/tools are
available

 In this course we focus more on how the OS
implements threads than how the user uses
threads

	Threads
	Definition
	Slide 3
	The Typical Figure
	A More Detailed Figure
	Multi-Threaded Program
	Advantages of Threads?
	Advantages of Threads?
	Drawbacks of Threads
	Drawbacks of Threads
	Threads on My Machine?
	Multi-Threading Challenges
	User Threads vs. Kernel Threads
	Many-to-One Model
	One-to-One Model
	Many-to-Many Model
	Two-Level Model
	Thread Libraries
	Java Threads
	Extending the Thread class
	Slide 21
	Slide 22
	Example
	Spawning a thread
	Example
	Slide 26
	What happens
	Example
	What happens?
	Three Sample Output
	Thread Programming
	The getState() method
	Thread Lifecycle: 4 states
	Slide 34
	Slide 35
	Slide 36
	Thread Scheduling
	Beyond Green Threads
	Java Threads / Kernel Threads
	Java Threads / Kernel Threads
	So what?
	The yield() method: example
	Example Execution
	Thread Priorities
	What will happen to my threads?
	The join() method
	The Runnable Interface
	Runnable Example
	Slide 49
	Safe Thread Cancellation
	Java Thread Recap
	Signals
	Fork()
	Win XP Threads
	Win XP Threads
	Linux Threads
	Conclusion

