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Operating Systems

Threads



Definition

Concurrent computing: several
computations are performed during
overlapping time periods (concurrent
instead of sequential)

Concurrent ⊊ Parallel
 Concurrency: Property of a program that can do

multiple things at the same time
More details? => ICS432



Definition
 A thread is a basic unit of CPU utilization within a process
 Multi-threaded process: Concurrent execution of

different parts of the same program
 Each thread has its own

 thread ID
 program counter
 register set
 stack

 It shares the following with other threads within the same
process 

 code section
 data section
 the heap (dynamically allocated memory)
 open files and signals



The Typical Figure



A More Detailed Figure

process

(shared) code

(shared) address space

program counter

st
ac

k

program counter

st
ac

k

program counter

st
ac

k

method f method g

global variable



Multi-Threaded Program
 Source-code view

 a blue thread
 a red thread
 a green thread



Advantages of Threads?

 Economy: 
 Creating a thread is cheap

 Slightly cheaper than creating a process under MacOSX / Linux
 Much cheaper than creating a process under Windows (createProcess)

 Context-switching between threads is cheap
 Usually cheaper than between processes

 Resource Sharing:
 Threads naturally share memory

 With processes you have to use possibly complicated
IPC (e.g., Shared Memory Segments)

 Having concurrent activities in the same address
space is very powerful

 But fraught with danger



Advantages of Threads?
 Responsiveness

 A program that has concurrent activities is more
responsive

 While one thread blocks waiting for some event, another
can do something

 e.g. Spawn a thread to answer a client request in a client-
server implementation

 This is true of processes as well, but with threads we
have better sharing and economy

 Scalability
 Running multiple “threads” at once uses the machine

more effectively
 e.g., on a multi-core machine

 This is true of processes as well, but with threads we
have better sharing and economy



Drawbacks of Threads

 One drawback of thread-based
concurrency compared to process-based
concurrency: If one thread fails (e.g., a
segfault), then the process fails
 And therefore the whole program

 This leads to process-based concurrency
 e.g., The Google Chrome Web browser
 See

http://www.google.com/googlebooks/chrome/
 Sort of a throwback to the pre-thread era

 Threads have been available for 20+ years
 Very trendy recently due to multi-core architectures



Drawbacks of Threads

 Threads may be more memory-
constrained than processes
 Due to OS limitation of the address space size

of a single process
 Threads do not benefit from memory

protection
 Concurrent programming with Threads is hard

 But so is it with Processes and Shared Memory
Segments

 We will see this a bit in this course, and much
more in ICS432



Threads on My Machine?

 Let’s run ps uxM (or ps -f -m x) and look at
several applications
 …

 Let’s compute the thread/process ratio on
my machine 
 Parsing the ps output using sed, for instance



Multi-Threading Challenges

 Typical challenges of multi-threaded
programming
 Dividing activities among threads
 Balancing load among threads
 Split data among threads
 Deal with data dependency and synchronization
 Testing and debugging

 Take ICS432 if you want maximum exposure to
these
 Section 4.2 talks a little bit about this
 Note that you’ll most likely all write multi-threaded

code on multi-core architectures



User Threads vs. Kernel Threads

 Threads can be supported solely in User Space
 Threads are managed by some user-level thread

library (e.g., Java Green Threads)
(i.e.: you can implement your own threads management system and the OS
will not know about it)

 Threads can also be supported in Kernel Space
 The kernel has data structure and functionality to

deal with threads
 Most modern OSes support kernel threads

 In fact, Linux doesn’t really make a difference
between processes and threads (same data
structure)



Many-to-One Model
 Advantage: multi-threading is

efficient and low-overhead
 No syscalls to the kernel

 Major Drawback #1: cannot take
advantage of a multi-core
architecture!

 Major Drawback #2: if one
threads blocks, then all the
others do!

 Examples (User-level Threads):
 Java Green Threads
 GNU Portable Threads



One-to-One Model

 Removes both drawbacks of the Many-to-One Model
 Creating a new threads requires work by the kernel

 Not as fast as in the Many-to-One Model

 Example:
 Linux
 Windows
 Solaris 9 and later



Many-to-Many Model
 A compromise
 If a user thread blocks, the

kernel can create a new kernel
threads to avoid blocking all user
threads

 A new user thread doesn’t
necessarily require the creation
of a new kernel thread

 True concurrency can be
achieved on a multi-core
machine

 Examples:
 Solaris 9 and earlier
 Win NT/2000 with the

ThreadFiber package



Two-Level Model

 The user can say: “Bind this thread to its own kernel thread”

 Example:
 IRIX, HP-UX, Tru64 UNIX
 Solaris 8 and earlier



Thread Libraries

 Thread libraries provide users with ways to
create threads in their own programs
 In C/C++: Pthreads

 Implemented by the kernel

 In C/C++: OpenMP
 A layer above Pthreads for convenient

multithreading in “easy” cases

 In Java: Java Threads
 Implemented by the JVM, which relies on threads

implemented by the kernel



Java Threads

 All memory-management headaches go
away with Java Threads
 In nice Java fashion

 Several programming languages have long
provided constructs/abstractions for writing
concurrent programs
 Modula, Ada, etc.

 Java does it like it does everything else, by
providing a Thread class
 You create a thread object
 Then you can start the thread



Extending the Thread class (All Java)

 To create a thread, you can extend the
Thread class and override its “run()”
method

class MyThread extends Thread {
    public void run() {
       . . .
    }
    . . .
}

MyThread t = new MyThread();



Implementing the Runnable interface (All Java)

 To create a thread, you can implement the
Runnable interface and its “run()” method

class MyStuff implements Runnable {
    public void run() {
       . . .
    }
    . . .
}

MyThread t = new Thread(new MyStuff());



Implementing the Callable interface (Java1.5+)

 Implement the Callable interface and its
“call()” method

 Adds a return type to call() and checked exceptions!

class MyBetterStuff implements Callable<Long> {
    public Long call() throws Exception {
       . . .

  return someLong;
    }
    . . .
}
ExecutorService executor = Executors.newFixedThreadPool(4);
executor.submit(new MyBetterStuff());



Example

public class MyThread extends Thread {
    public void run() {
       for (int i=0; i<10; i++) {
           System.out.println(“Hello world #“+i);
       }
    }
    . . .
}

myThread t = new MyThread();



Spawning a Thread/Runnable

 To launch, or spawn, a thread, you just call
the (encapsulating) thread’s start() method

 WARNING: Don’t call the run() method
directly to launch a thread
 If you call the run() method directly, then you

just call some method of some object, and the
method executes

 Fine, but probably not what you want
 The start() method, which you should not

override, does all the thread launching
 It launches a thread that starts its execution by

calling the run() method



Example
public class MyThread implements Runnable {
    public void run() {
       for (int i=0; i<5; i++) {
           System.out.println(“Hello world #“+i);
       }
    }
}

public class MyProgram {
  public MyProgram() {
     MyThread t = new Thread(new MyThread());
      t.start();
  }
  public static void main(String args[]) { 
     MyProgram p = new MyProgram();
  }
}



Example
public class MyThread implements Callable<Integer> {W
    public Integer call() throws Exception {
       for (int i=0; i<5; i++) {
           System.out.println(“Hello world #“+i);
       }
       Thread.sleep(10000);

return 42;
    }
}

public class MyProgram {
  public static void main(String args[]) { 
     ExecutorService executor = Executors.newFixedThreadPool(4);
     Future<Long> future = executor.submit(new MyThread());
     long value = future.get();
     //... and after 10000 ms, value is 42
  }
}



What happens
 The previous program runs as a Java process

 that is, a thread running inside the JVM
 When the start() method is called, the main thread

creates a new thread
 We now have two threads

 The “main”, “original” thread
 The newly created thread

 Both threads are running
 The main thread doesn’t do anything
 The new thread prints messages to screen and exits

 When both threads terminate, the process
terminates

 Let’s have the first thread do something as well...



Example
public class myThread extends Thread {
    public void run() {
       for (int i=0; i<5; i++)
           System.out.println(“Hello world #“+i);
    }
}

public class MyProgram {
  public MyProgram() {
     MyThread t = new MyThread();
      t.start();
      for (int i=0; i<5; i++) 
          System.out.println(“Beep ”+i);
  }
  public static void main(String args[]) { 
     MyProgram p = new MyProgram();
  }
}



What happens?

 Now we have the main thread printing to the
screen and the new thread printing to the
screen

 Question: what will the output be?
 Answer: Impossible to tell for sure

 If you know the implementation of the JVM on your
particular machine, then you may be able to tell

 But if you write this code to be run anywhere, then
you can’t expect to know what happens

 Let’s look at what happens on my laptop for a
program in which on thread prints “#” and the
other prints “.” 1000 times each



Three Sample Output

 Non-deterministic execution
 Somebody decides when a thread runs

 You run for a while, now you run for a while, ...

 This is called thread scheduling



Thread Programming

 Major Challenge: You cannot make any
assumption about thread scheduling

 Here is an example with C on Linux (no JVM)

 Major Difficulty: you may not be able to reproduce a
bug because each execution is different!



The getState() method
 The possible thread states are

 NEW: A thread that hasn’t been started yet
 RUNNABLE: The thread can be run, and may be running as

we speak
 It might not because another runnable thread could be running

 BLOCKED: The thread is blocked on a monitor
 See future lecture

 WAITING: The thread is waiting for another thread to do
something

 e.g., join()
 TIMED_WAITING: The thread is waiting for another thread to

do something, but will give up after a specified time out
 e.g., join()

 TERMINATED: The thread’s run method has returned



Thread Lifecycle: 4 states
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Thread Lifecycle: 4 states
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Thread Lifecycle: 4 states
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Thread Lifecycle: 4 states

RUNNABLE

running not 
running

BLOCKED/
WAITING/

TIMED_WAITING
NEW

TERMINATED

start()

synchronized
time elapsed
waiting done

run() method
returns

synchronization
sleep, timed-join

join



Thread Scheduling
 The JVM keeps track of threads, enacts the thread

state transition diagram
 Question: who decides which runnable thread to run?
 Old versions of the JVM used only Green Threads

 User-level threads implemented by the JVM
 Invisible to the O/S

JVMO/S

scheduler
thread

application
threads



Beyond Green Threads

 Green threads have all the disadvantages
of user-level threads (see earlier)
 Most importantly: Cannot exploit multi-core,

multi-processor architectures

 The JVM now provides native threads
 Green threads are typically not available

anymore (in Java)
 you can try to use “java -green” and see what

your system says

 Languages using green threads: Erlang, go...



Java Threads / Kernel Threads

 In modern JVMs, application threads are
mapped to kernel threads

O/S

scheduler
thread

application
threads

JVM



Java Threads / Kernel Threads
 This gets a bit complicated

 The JVM has a thread scheduler for application threads,
which are mapped to kernel threads

 The O/S also schedules kernel threads
 Several application threads could be mapped to the same

kernel thread!

 The JVM is itself multi-threaded!
 We have threads everywhere

 Application threads in the JVM
 Kernel threads that run application threads
 Threads in the JVM that do some work for the JVM

 Let’s look at a running JVM for a program that runs
nothing but an infinite loop...



So what?
 At this point, it seems that we throw a bunch of threads in,

and we don’t really know what happens
 To some extent it’s true, but we have ways to have some

control
 In particular, what happens in the RUNNABLE state?

RUNNABLE

running not 
running

 Can we control how multiple RUNNABLE threads become
running or not running?



The yield() method: example
public class MyThread extends Thread {
    public void run() {
       for (int i=0; i<5; i++) {
           System.out.println(“Hello world #“+i);
           Thread.yield();
       }
    }
}

public class MyProgram {
  public MyProgram() {
     MyThread t = new MyThread();
      t.start();
      for (int i=0; i<5; i++) {
          System.out.println(“foo”);
          Thread.yield();
      }
  }
  public static void main(String args[]) { 
     MyProgram p = new MyProgram();
  }
}

 With the yield()
method, a thread
will pause and give
other RUNNABLE
threads the
opportunity to
execute for a while



Example Execution

 The use of yield made
the threads’ executions
more interleaved

 Switching between
threads is more frequent

 But it’s still not
deterministic!

 Programs should
NEVER rely on yield()
for correctness

 yield() is really a “hint” to
the JVM



Thread Priorities

 The Thread class has a setPriority() and a
getPriority() method
 A new Thread inherits the priority of the thread

that created it

 Thread priorities are integers ranging
between Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY
 The higher the integer, the higher the priority



What will happen to my threads?

 The Java programmer can give hints to the JVM about what
the threads should share CPU resources

 The JVM implements various scheduling policies, that look
like those in the Kernel 
 See next set of lecture notes

 The JVM provides hints to the kernel about how the threads
should share CPU resources

 The kernel implements possibly complex scheduling policies
 In the end

 The programmer tries to influence the JVM
 The JVM tries to influence the kernel
 The Kernel ultimately decides

 Conclusion: you can never know exactly how your threads
will share CPU resources
 Hence non-deterministic executions



The join() method

 The join() method causes a thread to wait for
another thread’s termination

 This is useful for “dispatching” work to a worker
thread and waiting for it to be done

 Example:

Thread t = new MyThread();

 t.start();

 ...

 try { t.join(); } catch (InterruptedException e) { ... }

...



The Runnable Interface

 What if you want to create a thread that extends
some other class?

 e.g., a multi-threaded applet is at the same time a
Thread and an Applet

 Before Java8, Java did not allow for multiple
inheritance

 Which is why it has the concept of interfaces
 So another way to create a thread is to have

runnable objects
 It’s actually the most common approach

 Allows to add inheritance in a slightly easier way after
the fact

 Let’s see this on an example



Runnable Example
public class RunnableExample {

  class MyTask implements Runnable {
      public void run() {
         for (int i=0; i<50; i++) 
             System.out.print("#");
      }
  }
  public RunnableExample() {
     Thread t = new Thread(new MyTask());
      t.start();
      for (int i=0; i<50; i++)  
          System.out.println(".");
  }
  public static void main(String args[]) {
     RunnableExample p = new RunnableExample();
  }
}



Extends vs. Implement?

 We have seen two options:
 Option #1: “extends Threads”
 Option #2: “implements Runnable”

 Almost always, option #2 above is preferable
since you never know when you'll have to extend
a class

 Most Java APIs and documentation talk about
“Runnable objects”

 For this class it's up to you, but I suggest sticking
to “implements Runnable”

 2016 update :) BETTER: implements Callable<V>



Safe Thread Cancellation 
 One potentially useful feature would be for a thread to simply

terminate another thread
 Two possible approaches:

 Asynchronous cancellation
 One thread terminates another immediately

 Deferred cancellation
 A thread periodically checks whether it should terminate

 The problem with asynchronous cancellation: 
 may lead to an inconsistent state or to a synchronization problem if

the thread was in the middle of “something important”
 Absolutely terrible bugs lurking in the shadows

 The problem with deferred cancellation: the code is cumbersome
due to multiple cancellation points

 should I die? should I die? should I die?
 In Java, the Thread.stop() method is deprecated, and so

cancellation has to be deferred



Java Thread Recap

 Two ways to create threads
 extends Thread
 implements Runnable / Callable

 You should never just “kill” a thread
 Instead have the thread ask “should I die now?”

regularly

 The book has a entire Java example you should
study (fig. 4.12)

 Many more fascinating “features” (ICS432)



Signals
 We’ve talked about signals for processes

 Signal handlers are either default or user-specified
 signal() and kill() are the system calls

 In a multi-threaded program, what happens?
 Multiple options

 Deliver the signal to the thread to which the signal applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals

 Most UNIX versions: a thread can say which signals it accepts and
which signals it doesn’t accept

 On Linux: dealing with threads and signals is tricky but well
understood with many tutorials on the matter and man pages

 man pthread_sigmask
 man sigemptyset
 man sigaction



Fork()

 What happens when a thread calls fork()?
 Two possibilities:

 A new process is created that has only one thread
(the copy of the thread that called fork()), or

 A new process is created with all threads of the
original process (a copy of all the threads,
including the one that called fork())

 Some OSes provide both options
 In Linux the first option above is used

 If one calls exec() after fork(), all threads are
“wiped out” anyway



Win XP Threads

 Win XP uses one-to-one mapping
 Many-to-Many via a separate library

 A thread’s defined by its context
 An ID
 A register set
 A user stack and a kernel stack

 For user mode and kernel mode

 A private storage area for convenience

 The OS keeps track of threads in data
structures, as see in the following figure



Win XP Threads



Linux Threads

 Linux does not distinguish between processes
and threads: they’re called tasks

 Kernel data structure: task_struct

 The clone() syscall is used to create a task
 Allows to specify what the new task shares with its

parent
 Different flags lead to something like fork() or like

pthread_create()



Conclusion

 Threads are something you cannot ignore today
 Multi-core programming

 Programming with threads is known to be
difficult, and a lot of techniques/tools are
available

 In this course we focus more on how the OS
implements threads than how the user uses
threads
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