CPU Scheduling

ICS332
Operating Systems

"
CPU Scheduling

B CPU Scheduling: the decisions made by the OS to figure out
which ready processes/threads should run and for how long

Necessary in multi-programming environments

® CPU Scheduling is important for system performance and
productivity

Maximizes CPU utilization so that it's never idle
Perhaps make processes “happy”
® The policy is the scheduling strategy
® The mechanism is the dispatcher
A component of the OS that’s used to switch between processes
® That in turn uses the context switch mechanism
Must be lightning fast for time-sharing (dispatcher latency)

® There are strong theoretical underpinnings here, but we’ll focus
on pragmatic issues

"
CPU-1/O Burst Cycle

® Most processes alternate between CPU

and I/O activities

® One talks of a sequence of bursts
Starting and ending with a CPU burst

® |/O-bound process
Mostly waiting for I/O
Many short CPU bursts
e.g., /bin/cp
® CPU-bound process
Mostly using the CPU
Very short I/O bursts if any
e.g., enhancing an image
B The fact that processes are diverse
makes CPU scheduling difficult

load store
add store
read from file

walit for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

walit for I/O

> CPU burst

- 1/0O burst

CPU burst

A A

j 1/O burst

+ CPU burst

> 1/O burst

" A
The CPU Scheduler

® \Whenever the CPU becomes idle, a ready
process must be selected for execution

The OS keeps track of process states
This is called short-term scheduling
B Non-preemptive (or cooperative) scheduling: a
process holds the CPU until it is willing to give it
up
B Preemptive scheduling: a process can be

preempted even though it could have happily
continued executing

e.g., after some “you’ve had enough” timer expires

" J
Scheduling Decision Points

B Scheduling decisions can occur when:

#1: A process goes from RUNNING to WAITING
" e.g., waiting for I/O to complete

#2: A process goes from RUNNING to READY
" e.g., when an interrupt occurs (such as a timer going off)

#3: A process goes from WAITING to READY
® e.g., an I/O operation has completed

#4: A process goes from RUNNING to TERMINATED
#5: A process goes from NEW to READY

® Non-preemptive scheduling: #1, #4
Windows 3.x, Mac OS 9 (->2001)

B Preemptive scheduling: #1, #2, #3, #4, #5
Windows 95 and later, Max OS X, Linux

" J
Preemptive Scheduling

® Preemptive scheduling is good
No need to have processes willingly give up the CPU
The OS remains in control

" Preemptive scheduling is bad

Opens up many thorny issues having to do with process
synchronization

= |f a process is in the middle of doing something critical
and gets preempted, then bad things could happen

What if a process is preempted in the middle of a system
call during which the Kernel's updating its own data
structures?

® Disabling interrupts each time one enters the kernel is generally
not a good idea

"
Scheduling Objectives

® Finding the right objective function is an open question

® There are many conflicting goals that one could attempt to
achieve
Maximize CPU Utilization
® Fraction of the time the CPU isn'’t idle
Maximize Throughput
= Amount of “useful work” done per time unit
Minimize Turnaround Time
® Time from process creation to process completion
Minimize Waiting Time
= Amount of time a process spends in the READY state
Minimize Response Time
= Time from process creation until the “first response” is received

B Question: should we optimize averages, maxima, variances?
Again, a lot of theory here...

" JE——
Scheduling Queues

® The Kernel maintains Queues in which processes are placed
Linked lists of pointers to PCB data structures

® The Ready Queue contains processes that are in the READY state
B Device Queues contain processes waiting for particular devices

queue header PCB, PCB,
ready head » > —=
queue tail « registers registers
L] L]
ed head
tape .
unit 0 tail
:‘"‘ag oo PCB PCB
ape : PCB
unit 1 tail : 1 e
P P T =
disk head 4
unit 0 tail s
PCB;
terminal head -
unit 0 tail -
L]

Scheduling and Queues

»| ready queue

CPU

I/O request [

/O queue fe——

time _slice
expired
fork a
child

interrupt

occurs

child
executes

"
Short-Term, Long-Term

B So far what we've described characterizes short-term scheduling
Something happens, react to it the best you can

B Other options consist in building a plan for the future

Based on information on the processes, come up with a clever
arrangement of them in time and space

e.g., come up with a good mix of 1/O-bound and CPU-bound
processes to run together

®m A short-term scheduler should be fast

So that it can run every 100ms or so
Therefore it cannot make very sophisticated decisions

® A long-term scheduler can be slow
It doesn’t need to run as often
Therefore it can make sophisticated decisions

But it needs reasonably accurate information about the job mix,
which is often a steep challenge

® This is really the crux of the problem

"
Short-Term, Long-Term

B Typically, an OS doesn’t include a long-term scheduler

Although including “long-term features” in the short-term scheduler
is tempting and done to some extent

® | ong-term schedulers are built outside of the OS as an
application/service

e.g., a batch scheduler for a cluster

® There is a lot of knowledge, research, and software development
targeted to (good) long-term scheduling

One overriding question: how good is the information we have about
the job mix and how stationary is it?

How bad is the scheduling when done with bad information?
B “OS Scheduling” typically implies short-term

® Read Section 3.2.2 for further discussion of short-term vs. long-
term scheduling

"
Short-Term Scheduling Algs

® Now that we understand the reasons and the mechanisms
(queues, dispatcher, context switching) behind short-term
scheduling, the question is: what’s a good policy?
i.e., what (good) algorithms should be implemented to decide on
which process runs?
B Defining “good” is very difficult, due to the wide range of
conflicting goals

e.g., having many context switches is bad for throughput
" No useful work is done during a context switch

e.g., having few context switches is bad for response time

® One thing is certain: the algorithms cannot be overly
complicated so that they can be fast

B | et’'s see a few standard algorithms

"
(Non-Preemptive) FCFS

® FCFS: First Come First Serve

B Straightforward: Implement the Ready Queue as a FIFO

B Problem: the average waiting time can be huge

B Textbook’s example, assuming purely CPU-bound processes
Process Burst Time

P, 24
P, 3
P, 3
B Gantt charts for two orders of (almost simultaneous) arrivals:
P, P, P,
0 i oy gy Aaverage waittime = 17
P, P, P,

A 5 30 average wait time = 3

" J
(Non-Preemptive) FCFS

B Consider the following situation

1 CPU-bound process with only a few |/O bursts

n 1/O-bound processes with frequent short CPU bursts
® The “convoy effect”

All I/0O-bound processes block on I/O

The CPU-bound gets the CPU

All I/O devices do their work

All I/0O-bound processes go back to READY

But now they can’t place their next I/O request because they
need the CPU, which is hogged by the CPU-bound process

Result: I/O resources sit idle even though there are many
processes who could use them

® Non-Premptive FCFS is just not a good idea

" J
FCFS vs Objective Functions

® Maximize CPU Utilization: Excellent (but no I/0!)

® Maximize Throughput: Highly dependent on first
submitted job(s) duration

® Minimize Turnaround Time: Highly dependent on first
submitted job(s) duration

® Minimize Waiting Time: Highly dependent on first
submitted job(s) duration

® Minimize Response Time: Highly dependent on first
submitted job(s) duration

® Non-Premptive FCFS is in general just not a good idea

" J
Shortest Job First (SJF)

B “Shortest-next-CPU-burst” algorithm

® Non-preemptive example:

Process Arrival Time Burst Time

P, 0.0 10
P, 2.0 6
P, 4.0 7
P, 50 2
B Gantt Chart;
P, P, P, P,
0 10 12 18

25

average wait time = 10

average elapsed time = 16.25

average turnaround time = 13.5

" J
Shortest Job First (SJF)

B “Shortest-next-CPU-burst” algorithm
B Preemptive example:
Process __Arrival Time Burst Time

P, 0.0 10
P, 2.0 6
P, 4.0 7
P, 5.0 2

| average wait time = 5.75

P, P, P, P,

average elapsed time = 12

0 2 5 7 10 17 o5 average turnaround time = 14.75

" J
SJF vs Objective Functions

® Maximize CPU Utilization: Excellent (but still no I/0!)

® Maximize Throughput: NonPreemptive: OK/
Preemptive: Good

® Minimize Turnaround Time: NonPreemptive: OK/
Preemptive: Good

® Minimize Waiting Time: Best (!) (see next slide)

® Minimize Response Time: NonPreemptive: OK /
Preemptive: OK

® Non-Premptive SJF is OK; Preemptive is better but is it
the best?

" J
Shortest Job First (SJF)

B Question: How good is a scheduling algorithm?
B |n some cases, one can prove optimality for a given metric

® There is a HUGE theoretical literature on the relative merit of
particular algorithms for particular metrics and for particular
hypotheses

B A known result is: SJF is provably optimal for average wait
time
In the theoretical literature, called: SRPT (Shortest Remaining
Processing Time)
Optimal with and without preemption

® Big Problem: How can we know the burst durations???

Perhaps doable for long-term scheduling, but known difficulties
" e.g., rely on user-provided estimates???

This problem is typical of the disconnect between theory and
practice

® Can we do any good prediction?

"
Predicting CPU burst durations

® One only knows the duration of a CPU burst once it's over
B |dea: predict future CPU bursts based on previous CPU bursts

B Exponential averaging of previously observed burst durations
Predict the future given the past
Give more weight to the recent past than the remote past

Tn+l = aly + (1 — a)Tn

/ \ prediction for
prediction for burst #n
burst #n+1
observation parameter between 0 and 1
for burst #n 0: don’t care about most recent history

1: care only about the most recent history
.5: some compromise

"
Exponential Averaging

T0 — 10} a= 0.9

T, 10

CPU burst (t) 6 4 6 4 13 13 13

"guess" (t) 10 8 6 6 5 9 11 12

"
Priority Scheduling

® SJF is a special case of Priority Scheduling

B | et us assume that we have jobs with various priorities
Priority: A number in some range (e.g., “0..9”)
No convention: low number can mean low or high priority

® Priorities can be internal:
e.g., in SJF it's the predicted burst time, the number of open files

® Priorities can be external:
e.g., set by users to specify relative importance of jobs

® Simply implement the Ready Queue as a Priority Queue
® | ike SJF, priority scheduling can be preemptive or non-preemptive
B See example in book, nothing difficult 6.3.3
® The problem: will a low-priority process ever run??
It could be constantly overtaken by higher-priority processes
It could be preempted by higher-priority processes

This is called starvation (i.e. indefinite blocking)

Textbook anecdote/rumor: “When they shut down the IBM 7094 at MIT in 1973, they
found a low-priority process that had been submitted in 1967 and had yet to run.”

B A solution: Priority aging
Increase the priority of a process as it ages

" J
Round-Robin Scheduling

® RR Scheduling is preemptive and designed for time-sharing

B |t defines a time quantum
A fixed interval of time (10-100ms)
® Unless a process is the only READY process, it never runs for

longer than a time quantum before giving control to another
ready process

It may run for less than the time quantum if its CPU burst is
smaller than the time quantum

B Ready Queue is a FIFO

Whenever a process changes its state to READY it is placed at
the end of the FIFO

B Scheduling:
Pick the first process from the ready queue
Set a timer to interrupt the process after 1 quantum
Dispatch the process

RR Scheduling Example

Process Burst Time

P, 24

P 3 quantum = 4
P,|P,|P, | P, | P, | P | P | P,

0 4 7 10 14 18 22 26 30

B Typically, higher average wait time than
SJF, but better response time

And the wait time is bounded!

" J
Picking the Right Quantum

process time = 10 quantum context
switches

12 0

® Trade-off:

Short quantum: great response/interactivity but high overhead
= Hopefully not too high if the dispatcher is fast enough
Long quantum: poor response/interactivity, but low overhead
= With a very long time quantum, RR Scheduling becomes FCFS Scheduling

B |f context-switching time is 10% of time quantum, then the CPU spends
>10% of its time doing context switches

B |n practice, %CPU time spent on switching is very low
time quantum: 10ms to 100ms
context-switching time: 10 us

"
Multilevel Queue Scheduling

® The RR Scheduling scheme treats all processes equally

B |n practice, one often wants to classify processes in
groups, e.g., based on externally-defined process priorities

B Simple idea: use one ready queue per class of processes

e.g., if we support 10 priorities, we maintain 10 ready queues
B Scheduling within queues

Each queue has its own scheduling policy

e.g., High-priority could be RR, Low-priority could be FCFS
B Scheduling between the queues

Typically preemptive priority scheduling

= A process can run only if all higher-priority queues are empty

Or time-slicing among queues
" e.g., 80% to Queue #1 and 20% to Queue #2

" SN
Multi-Level Queue Example

highest priority

> system processes E—
m— interactive processes ———
s interactive editing processes

= batch processes -
> student processes — 4

lowest priority

" A
Multilevel Feedback Queues

B Processes can move among the queues

If queues are defined based on internal process characteristics, it
makes sense to move a process whose characteristics have
changed

" e.g., based on CPU burst length
It's also a good way to implement priority aging
- Lezlook at the example in the textbook

> quantum = 8 4 QO0: RR (q=8) | high

il ‘ _ _ across-queue
> quantum = 16 N Q1: RR (q 16) oriority
:‘¢ FCFS = Q2: FCFS low

" A
Multilevel Feedback Queues

B This scheme implements a particular CPU scheduling
“philosophy”
A new process arrives
It's placed in Q0 and is, at some point, given a quantum of 8

If it doesn’t use it all, it’s likely a I/O-bound process and should be
kept in the high-priority queue so that it is assured to get the CPU
on the rare occasions that it needs it

If it does use it all, then it gets demoted to Q1 and, at some
points, is given a quantum of 16

If it does use it all, then it’s likely a CPU-bound process and it
gets demoted to Q2

At that point the process runs only when no non-CPU-intensive
process needs the CPU
B Rationale: non-CPU-intensive jobs should really get the
CPU quickly on the rare occasions they need them,
because they could be interactive processes (this is all
guesswork, of course)

" A
Multilevel Feedback Queues

® The Multilevel Feedback Queues scheme is very
general because highly configurable
Number of queues
Scheduling algorithm for each queue
Scheduling algorithm across queues
Method used to promote/demote a process

® However, what's best for one system/workload may
not be best for another

Systems configurable with tons of parameters always hold
great promises but these promises are hard to achieve

B Also, it requires quite a bit of computation

We'll see that (Linux) Kernel developers resort to cool
hacks to speed it up

" JE
What’s a Good Scheduling Algorithm?

B Few analytical/theoretical results are available

Essentially, take two scheduling algorithms A and B, take a metric
(e.g., wait time), and more likely than not you can find one instance
in which A > B, and another instance in which A< B

In rare cases you can show that an algorithm is optimal (e.g.,
SRPT for average wait time)

® Another option: Simulation
Test a million cases by producing Gantt Charts (not by hand)
Compare: Ais better than B in 72% of the cases

B Finally: Implementation
Implement both A and B in the kernel (requires time!)

Use one for 10 hours, and the other for 10 hours for some
benchmark workload

Compare: A is better than B because 12% more useful work was
accomplished

" J
Thread Scheduling in Java

® The JVM defines a notion of thread priority
Vaguely defined, not necessarily preemptive

Essentially some “threads” are preferred over others,
but you can'’t rely on anything clear

But for very old ones JVMs do things that one would
expect (e.g., preemptive multi-queue round-robin)

B A thread can yield control of the CPU by calling
Thread.yield() (... But don't do it)
B The thread class has Thread.setPriority() and
Thread.getPriotity()

Priorities are between Thread.MIN_PRIORITY
(lowest) and Thread.MAX_PRIORITY (highest)

"
Thread Scheduling in Java

® The JVM uses the user-specified

thread priorities to convey Java priority Win32 priority

information to the OS, who makes (MIN_PRIORITY) LOWEST

the final calls LOWEST

BELOW_NORMAL

® Thread scheduling in the JVM is

not portable (i.e., when writing BELOW_NORMAL

about thread scheduling) ABOVE_NORMAL

. ABOVE_NORMAL
Unless you use ThreadPool, in -

HIGHEST

1
2
3
4
code you cannot assume anything |5 (NORM_PRIORITY) | NORMAL
6
Fi
8
9

which case you can configure
the thread pool to be

HIGHEST

I 0 (MAX_PRIORITY TIME_CRITICAL
scheduled precisely 1Dane) :

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

" JEE
Win XP (and beyond) Scheduling

® Priority-based, time quantum-based, multi-queue, preemptive scheduling
(Section 5.6.2)

m 32-level priority scheme: high number, high priority
Variable class: priorities 1 to 15
Real-time class: priorities 16 to 31
(A special memory-management thread runs at priority 0)

® The Win32 APl exposes abstract priority concepts to users, which are
translated into numerical priorities

User-settablejli’riority Class

N

real- ; above below idle
q>3 0 _ time high normal normal normal priority
Z O . e
T O time-critical 31 15 15 15 15 15
- 0O
o highest 26 15 12 10 8 6
~ @©
% c above normal 25 14 11 9 7 5 Base Priorities
c
O = < normal 24 13 10 8 6 4
=2 for each class
% ~ below normal 23 12 9 7 5 3
=
% § lowest 22 11 8 6 4 2
S o L idle 16 1 1 1 1 1

"
Win XP (and beyond) Scheduling

® \When a thread’s quantum runs out, unless the thread’s in the
real-time class (priority > 15), the thread'’s priority is lowered

This is likely a CPU-bound thread, and we need to keep the system
interactive

® \When a thread “wakes up”, its priority is boosted
It's likely an |O-bound thread

® The boost depends on what the thread was waiting for

e.g., if it was the keyboard, it's definitely an interactive thread and
the boost should be large

B These are the same general ideas as in other OSes (e.g., see
Solaris priority scheeme in textbook): preserving interactivity is a
key concern

® The idle thread:

Win XP maintains a “bogus” idle thread (priority 1)
“runs” (and does nothing) if nobody else can run
Simplifies OS design to avoid the “no process is running” case

" J
Linux Scheduling: 1.2 and 2.2

® The Linux kernel has a long history of
scheduler development

m Kernel 1.2 (1995): simplicity and speed
Round-Robin scheduling
Implemented with a circular queue

m Kernel 2.2 (1999): toward sophistication

Scheduling classes
" real-time, non-preemptible, non-real-time

Priorities within classes

" S
Linux Priorities

® Priority scheme:
low value means high priority

numeric relative time
priority priority quantum
0 highest 200 ms
* real-time
: tasks
99
100
: other
. tasks
lowest 10 ms

Linux Scheduling: 2.4

m24:2001
® The schedule proceeds as a sequence of epochs
® \Vithin each epoch, each task is given a time slice of

some duration

Time slice durations are computed differently for different
tasks depending on how they used their previous time
slices

B A time slice doesn’t have to be used “all at once”
A process cant get the CPU multiple times in an epoch,
until its time slice is used

® Once all READY processes have used their time

slice, then the epoch ends, and a new epoch begins

Of course, some processes are still blocked, waiting for
events, and they’ll wake up during an upcoming epoch

" J
Linux Scheduling: 2.4

® How to compute time slices?

If a process uses its whole time slice, then it will get the
same one

If a process hasn'’t used its whole time slice (.e.g., because
blocked on I/O) then it gets a larger time slice!

® This may seem counter-intuitive but:

Getting a larger time slice doesn’t mean you'll use it if
you're not READY anyway

Those processes that block often will thus never user their
(enlarged) time slices

But, priorities between threads (i.e., how the scheduler
picks them from the READY queue) are computed based
on the time slice duration

= Alarger time slice leads to a higher priority

" J
Linux Scheduling: 2.4

® Problem: O(n) scheduling

At each scheduling event, the scheduler needs to go

through the whole list of ready tasks to pick one to
run

If n (the number of tasks) is large, then it will take
long to pick one to run

= “Instead of spending your time thinking about it and
wasting time, just run some task already!”

® There were other problems with 2.4 scheduling,
e.g. multi-core machine

Increasing numbers of cores didn't make scheduling
easier and schedulers changed dramatically in years

"
Linux Scheduling: 2.6.0 to 2.6.22

® Kernel 2.6 (2003) tries to resolve the O(n)
problem (... and a few others)

B The so-called “O(1) scheduler”

Can be seen as implementation tricks so that
one never need to have code that looks like
“for all ready tasks do....”
® During an epoch, a task can be active or
expired
active task: its time slice hasn’t been fully
consumed

expired task: has used all of its time slice

" A
Linux Time Slices

B The kernel keeps two arrays of round-robin queues
One for active tasks: one Round Robin queue per priority level
One for expired tasks: one Round Robin queue per priority

level
active expired
array array
priority task lists priority task lists
[0] @@ [0] @& @
[1] Oo—0—=0 [1] O

[140] ® [140] o0—oO

" J
O(1) Scheduling

® The priority array data structure in the Kernel's
code:

struct prio_array {
int nr_active; // total num of tasks
unsigned long bitmap[5]; // priority bitmap
struct list_head queue[MAX_ PRIQ]; // the queues

}
® \What's that bitmap thing?

ICS312 if you're not familiar with bitmaps...

" A
Using a Bitmap for Speed

® The bitmap contains one bit for each priority level
5*32 = 160 > 141 priority levels
® |nitially all bits are set to zero
® \When a task of a given priority becomes ready, the corresponding
bit in the bitmap is set to one
Build a bit mask that looks like 0...010...0
Do a logical OR
® Finding the highest priority for which there is a ready task becomes
simple: just find the first bit set to 1 in the bitmap
This doesn’t depend on the number of tasks in the system
Many ISAs provide an instruction to do just that
= On x86, the instruction’s called bsfl
® Finding the next task to run (in horrible pseudo-code) is then done
easily:
prio_array.head_queue[bsfl(bitmap)].task_struct
No looping over all priority levels, so we're O(1)

"
Recalculating Time Slices

® \When the time slice of a task expires it is moved from the
active array to the expired array

® At this time, the task’s time slice is recomputed

That way we never have a “recompute all time slices” which would
monopolize the kernel for a while and hinder interactivity

Maintains the O(1)-time property
® \WWhen the active array is empty, it is swapped with the expired
array
This is a pointer swap, not a copy, so it's O(1)-time
® Time-slice and priority computations attempt to identify more
interactive processes
Keeps track of how much they sleep
Uses priority boosts
And other bells, and whistles

B All details in “Linux Kernel Development”, Second Edition, by
R. Love (Novell Press)

" A
Linux 2 2.6.23

® Problem with the O(1) scheduler: the code in the kernel
became a mess and hard to maintain
Seems to blur “policy” and “mechanism™?

B CFS: Completely Fair Scheduler
Developed by the developer of O(1), with ideas from others

® Main idea: keep track of how fairly the CPU has been
allocated to tasks, and “fix” the unfairness

B For each task, the kernel keeps track of its virtual time

The sum of the time intervals during which the task was given the
CPU since the task started

Could be much smaller than the time since the task started

B Goal of the scheduler: give the CPU to the task with the
smallest virtual time
i.e., to the task that’s the least “happy”

" A
Linux 2 2.6.23

B Tasks are stored in a red-black tree
O(log n) time to retrieve the least happy task

O(1) to update its virtual time once it's done running for a
while

O(log n) time to re-insert it into the red-black tree

B As they are given the CPU, tasks migrate from the left
of the tree to the right

B Note that I/O tasks that do few CPU bursts will never
have a large virtual time, and thus will be “high
priority”

B Tons of other things in there controlled by parameters

e.g., how long does a task run for?

" J
Linux Scheduling

® Not everybody loves CFS

Some say it just will not work for running thousands of processes in
a “multi-core server” environment

But then the author never really said it would
B At this point, it seems that having a single scheduler for
desktop/laptop usage and server usage is just really difficult
B Having many configuration parameters is perhaps not helpful
How do you set them?
® Other schedulers are typically proposed and hotly debated
relatively frequently

e.g., the BFS (Brain <expletive> Scheduler) for desktop/laptop
machines that tries to be as simple as possible
= One queue, no “interactivity estimators”, ...

" A
Conclusions

B There are many options for CPU scheduling
® Modern OSes use preemptive scheduling

B Some type of multilevel feedback priority
queues is what most OSes do right now

B A common concern is to ensure interactivity

I/O bound processes often are interactive, and
thus should have high priority

Having “quick” short-term scheduling is
paramount

	CPU Scheduling
	CPU Scheduling
	CPU-I/O Burst Cycle
	The CPU Scheduler
	Scheduling Decision Points
	Preemptive Scheduling
	Scheduling Objectives
	Scheduling Queues
	Scheduling and Queues
	Short-Term, Long-Term
	Short-Term, Long-Term
	Short-Term Scheduling Algs
	(Non-Preemptive) FCFS
	(Non-Preemptive) FCFS
	Slide 15
	Shortest Job First (SJF)
	Shortest Job First (SJF)
	Slide 18
	Shortest Job First (SJF)
	Predicting CPU burst durations
	Exponential Averaging
	Priority Scheduling
	Round-Robin Scheduling
	RR Scheduling Example
	Picking the Right Quantum
	Multilevel Queue Scheduling
	Multi-Level Queue Example
	Multilevel Feedback Queues
	Multilevel Feedback Queues
	Multilevel Feedback Queues
	What’s a Good Scheduling Algorithm?
	Thread Scheduling in Java
	Thread Scheduling in Java
	Win XP Scheduling
	Win XP Scheduling
	Linux Scheduling: 1.2 and 2.2
	Linux Priorities
	Linux Scheduling: 2.4
	Linux Scheduling: 2.4
	Linux Scheduling: 2.4
	Linux Scheduling: 2.6
	Linux Time Slices
	O(1) Scheduling
	Using a Bitmap for Speed
	Recalculating Time Slices
	Linux ≥ 2.6.23
	Linux ≥ 2.6.23
	Linux Scheduling
	Conclusions

