
ICS332
Operating Systems

CPU Scheduling

CPU Scheduling
 CPU Scheduling: the decisions made by the OS to figure out

which ready processes/threads should run and for how long
 Necessary in multi-programming environments

 CPU Scheduling is important for system performance and
productivity

 Maximizes CPU utilization so that it’s never idle
 Perhaps make processes “happy”

 The policy is the scheduling strategy
 The mechanism is the dispatcher

 A component of the OS that’s used to switch between processes
 That in turn uses the context switch mechanism

 Must be lightning fast for time-sharing (dispatcher latency)

 There are strong theoretical underpinnings here, but we’ll focus
on pragmatic issues

CPU-I/O Burst Cycle
 Most processes alternate between CPU

and I/O activities
 One talks of a sequence of bursts

 Starting and ending with a CPU burst

 I/O-bound process
 Mostly waiting for I/O
 Many short CPU bursts
 e.g., /bin/cp

 CPU-bound process
 Mostly using the CPU
 Very short I/O bursts if any
 e.g., enhancing an image

 The fact that processes are diverse
makes CPU scheduling difficult

The CPU Scheduler

 Whenever the CPU becomes idle, a ready
process must be selected for execution

 The OS keeps track of process states
 This is called short-term scheduling

 Non-preemptive (or cooperative) scheduling: a
process holds the CPU until it is willing to give it
up

 Preemptive scheduling: a process can be
preempted even though it could have happily
continued executing

 e.g., after some “you’ve had enough” timer expires

Scheduling Decision Points
 Scheduling decisions can occur when:

 #1: A process goes from RUNNING to WAITING
 e.g., waiting for I/O to complete

 #2: A process goes from RUNNING to READY
 e.g., when an interrupt occurs (such as a timer going off)

 #3: A process goes from WAITING to READY
 e.g., an I/O operation has completed

 #4: A process goes from RUNNING to TERMINATED
 #5: A process goes from NEW to READY

 Non-preemptive scheduling: #1, #4
 Windows 3.x, Mac OS 9 (->2001)

 Preemptive scheduling: #1, #2, #3, #4, #5
 Windows 95 and later, Max OS X, Linux

Preemptive Scheduling
 Preemptive scheduling is good

 No need to have processes willingly give up the CPU
 The OS remains in control

 Preemptive scheduling is bad
 Opens up many thorny issues having to do with process

synchronization
 If a process is in the middle of doing something critical

and gets preempted, then bad things could happen
 What if a process is preempted in the middle of a system

call during which the Kernel’s updating its own data
structures?

 Disabling interrupts each time one enters the kernel is generally
not a good idea

Scheduling Objectives
 Finding the right objective function is an open question
 There are many conflicting goals that one could attempt to

achieve
 Maximize CPU Utilization

 Fraction of the time the CPU isn’t idle
 Maximize Throughput

 Amount of “useful work” done per time unit
 Minimize Turnaround Time

 Time from process creation to process completion
 Minimize Waiting Time

 Amount of time a process spends in the READY state
 Minimize Response Time

 Time from process creation until the “first response” is received

 Question: should we optimize averages, maxima, variances?
 Again, a lot of theory here...

Scheduling Queues
 The Kernel maintains Queues in which processes are placed

 Linked lists of pointers to PCB data structures

 The Ready Queue contains processes that are in the READY state
 Device Queues contain processes waiting for particular devices

Scheduling and Queues

Short-Term, Long-Term
 So far what we’ve described characterizes short-term scheduling

 Something happens, react to it the best you can
 Other options consist in building a plan for the future

 Based on information on the processes, come up with a clever
arrangement of them in time and space

 e.g., come up with a good mix of I/O-bound and CPU-bound
processes to run together

 A short-term scheduler should be fast
 So that it can run every 100ms or so
 Therefore it cannot make very sophisticated decisions

 A long-term scheduler can be slow
 It doesn’t need to run as often
 Therefore it can make sophisticated decisions
 But it needs reasonably accurate information about the job mix,

which is often a steep challenge
 This is really the crux of the problem

Short-Term, Long-Term
 Typically, an OS doesn’t include a long-term scheduler

 Although including “long-term features” in the short-term scheduler
is tempting and done to some extent

 Long-term schedulers are built outside of the OS as an
application/service

 e.g., a batch scheduler for a cluster
 There is a lot of knowledge, research, and software development

targeted to (good) long-term scheduling
 One overriding question: how good is the information we have about

the job mix and how stationary is it?
 How bad is the scheduling when done with bad information?

 “OS Scheduling” typically implies short-term
 Read Section 3.2.2 for further discussion of short-term vs. long-

term scheduling

Short-Term Scheduling Algs
 Now that we understand the reasons and the mechanisms

(queues, dispatcher, context switching) behind short-term
scheduling, the question is: what’s a good policy?
 i.e., what (good) algorithms should be implemented to decide on

which process runs?

 Defining “good” is very difficult, due to the wide range of
conflicting goals
 e.g., having many context switches is bad for throughput

 No useful work is done during a context switch
 e.g., having few context switches is bad for response time

 One thing is certain: the algorithms cannot be overly
complicated so that they can be fast

 Let’s see a few standard algorithms

(Non-Preemptive) FCFS
 FCFS: First Come First Serve
 Straightforward: Implement the Ready Queue as a FIFO
 Problem: the average waiting time can be huge
 Textbook’s example, assuming purely CPU-bound processes

Process Burst Time

 P1 24

 P2 3

 P3 3

 Gantt charts for two orders of (almost simultaneous) arrivals:

P1 P2 P3

24 27 300

P1P3P2

63 300

average wait time = 17

average wait time = 3

(Non-Preemptive) FCFS
 Consider the following situation

 1 CPU-bound process with only a few I/O bursts
 n I/O-bound processes with frequent short CPU bursts

 The “convoy effect”
 All I/O-bound processes block on I/O
 The CPU-bound gets the CPU
 All I/O devices do their work
 All I/O-bound processes go back to READY
 But now they can’t place their next I/O request because they

need the CPU, which is hogged by the CPU-bound process
 Result: I/O resources sit idle even though there are many

processes who could use them

 Non-Premptive FCFS is just not a good idea

FCFS vs Objective Functions

 Maximize CPU Utilization: Excellent (but no I/O!)
 Maximize Throughput: Highly dependent on first

submitted job(s) duration
 Minimize Turnaround Time: Highly dependent on first

submitted job(s) duration
 Minimize Waiting Time: Highly dependent on first

submitted job(s) duration
 Minimize Response Time: Highly dependent on first

submitted job(s) duration

 Non-Premptive FCFS is in general just not a good idea

Shortest Job First (SJF)
 “Shortest-next-CPU-burst” algorithm
 Non-preemptive example:

Process Arrival Time Burst Time
 P1 0.0 10

 P2 2.0 6

 P3 4.0 7

 P4 5.0 2

 Gantt Chart:

180

P1 P4

10 12

P2

25

average wait time = 10P3

average turnaround time = 13.5

average elapsed time = 16.25

Shortest Job First (SJF)
 “Shortest-next-CPU-burst” algorithm
 Preemptive example:

Process Arrival Time Burst Time
 P1 0.0 10

 P2 2.0 6

 P3 4.0 7

 P4 5.0 2

 Gantt Chart:

170

P1 P4
P2

2 5

P1

25

average wait time = 5.75

7 10

P2
P3 average elapsed time = 12

average turnaround time = 14.75

SJF vs Objective Functions

 Maximize CPU Utilization: Excellent (but still no I/O!)
 Maximize Throughput: NonPreemptive: OK /

Preemptive: Good
 Minimize Turnaround Time: NonPreemptive: OK /

Preemptive: Good
 Minimize Waiting Time: Best (!) (see next slide)
 Minimize Response Time: NonPreemptive: OK /

Preemptive: OK

 Non-Premptive SJF is OK; Preemptive is better but is it
the best?

Shortest Job First (SJF)
 Question: How good is a scheduling algorithm?
 In some cases, one can prove optimality for a given metric
 There is a HUGE theoretical literature on the relative merit of

particular algorithms for particular metrics and for particular
hypotheses

 A known result is: SJF is provably optimal for average wait
time

 In the theoretical literature, called: SRPT (Shortest Remaining
Processing Time)

 Optimal with and without preemption
 Big Problem: How can we know the burst durations???

 Perhaps doable for long-term scheduling, but known difficulties
 e.g., rely on user-provided estimates???

 This problem is typical of the disconnect between theory and
practice

 Can we do any good prediction?

Predicting CPU burst durations
 One only knows the duration of a CPU burst once it’s over
 Idea: predict future CPU bursts based on previous CPU bursts
 Exponential averaging of previously observed burst durations

 Predict the future given the past
 Give more weight to the recent past than the remote past

prediction for
burst #n+1

observation
for burst #n

prediction for
burst #n

parameter between 0 and 1
0: don’t care about most recent history

1: care only about the most recent history
.5: some compromise

Exponential Averaging

Priority Scheduling
 SJF is a special case of Priority Scheduling
 Let us assume that we have jobs with various priorities

 Priority: A number in some range (e.g., “0..9”)
 No convention: low number can mean low or high priority

 Priorities can be internal:
 e.g., in SJF it’s the predicted burst time, the number of open files

 Priorities can be external:
 e.g., set by users to specify relative importance of jobs

 Simply implement the Ready Queue as a Priority Queue
 Like SJF, priority scheduling can be preemptive or non-preemptive
 See example in book, nothing difficult 6.3.3
 The problem: will a low-priority process ever run??

 It could be constantly overtaken by higher-priority processes
 It could be preempted by higher-priority processes
 This is called starvation (i.e. indefinite blocking)
 Textbook anecdote/rumor: “When they shut down the IBM 7094 at MIT in 1973, they

found a low-priority process that had been submitted in 1967 and had yet to run.”

 A solution: Priority aging
 Increase the priority of a process as it ages

Round-Robin Scheduling
 RR Scheduling is preemptive and designed for time-sharing
 It defines a time quantum

 A fixed interval of time (10-100ms)
 Unless a process is the only READY process, it never runs for

longer than a time quantum before giving control to another
ready process

 It may run for less than the time quantum if its CPU burst is
smaller than the time quantum

 Ready Queue is a FIFO
 Whenever a process changes its state to READY it is placed at

the end of the FIFO
 Scheduling:

 Pick the first process from the ready queue
 Set a timer to interrupt the process after 1 quantum
 Dispatch the process

RR Scheduling Example

 Process Burst Time
 P1 24

 P2 3

 P3 3

 Typically, higher average wait time than
SJF, but better response time
 And the wait time is bounded!

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

quantum = 4

Picking the Right Quantum

 Trade-off:
 Short quantum: great response/interactivity but high overhead

 Hopefully not too high if the dispatcher is fast enough
 Long quantum: poor response/interactivity, but low overhead

 With a very long time quantum, RR Scheduling becomes FCFS Scheduling

 If context-switching time is 10% of time quantum, then the CPU spends
>10% of its time doing context switches

 In practice, %CPU time spent on switching is very low
 time quantum: 10ms to 100ms
 context-switching time: 10 ms

Multilevel Queue Scheduling
 The RR Scheduling scheme treats all processes equally
 In practice, one often wants to classify processes in

groups, e.g., based on externally-defined process priorities
 Simple idea: use one ready queue per class of processes

 e.g., if we support 10 priorities, we maintain 10 ready queues

 Scheduling within queues
 Each queue has its own scheduling policy
 e.g., High-priority could be RR, Low-priority could be FCFS

 Scheduling between the queues
 Typically preemptive priority scheduling

 A process can run only if all higher-priority queues are empty

 Or time-slicing among queues
 e.g., 80% to Queue #1 and 20% to Queue #2

Multi-Level Queue Example

Multilevel Feedback Queues
 Processes can move among the queues

 If queues are defined based on internal process characteristics, it
makes sense to move a process whose characteristics have
changed

 e.g., based on CPU burst length

 It’s also a good way to implement priority aging

 Let’s look at the example in the textbook
Q0: RR (q=8)

Q1: RR (q=16)

Q2: FCFS

across-queue

priority

high

low

Multilevel Feedback Queues
 This scheme implements a particular CPU scheduling

“philosophy”
 A new process arrives
 It’s placed in Q0 and is, at some point, given a quantum of 8
 If it doesn’t use it all, it’s likely a I/O-bound process and should be

kept in the high-priority queue so that it is assured to get the CPU
on the rare occasions that it needs it

 If it does use it all, then it gets demoted to Q1 and, at some
points, is given a quantum of 16

 If it does use it all, then it’s likely a CPU-bound process and it
gets demoted to Q2

 At that point the process runs only when no non-CPU-intensive
process needs the CPU

 Rationale: non-CPU-intensive jobs should really get the
CPU quickly on the rare occasions they need them,
because they could be interactive processes (this is all
guesswork, of course)

Multilevel Feedback Queues
 The Multilevel Feedback Queues scheme is very

general because highly configurable
 Number of queues
 Scheduling algorithm for each queue
 Scheduling algorithm across queues
 Method used to promote/demote a process

 However, what’s best for one system/workload may
not be best for another

 Systems configurable with tons of parameters always hold
great promises but these promises are hard to achieve

 Also, it requires quite a bit of computation
 We’ll see that (Linux) Kernel developers resort to cool

hacks to speed it up

What’s a Good Scheduling Algorithm?

 Few analytical/theoretical results are available
 Essentially, take two scheduling algorithms A and B, take a metric

(e.g., wait time), and more likely than not you can find one instance
in which A > B, and another instance in which A < B

 In rare cases you can show that an algorithm is optimal (e.g.,
SRPT for average wait time)

 Another option: Simulation
 Test a million cases by producing Gantt Charts (not by hand)
 Compare: A is better than B in 72% of the cases

 Finally: Implementation
 Implement both A and B in the kernel (requires time!)
 Use one for 10 hours, and the other for 10 hours for some

benchmark workload
 Compare: A is better than B because 12% more useful work was

accomplished

Thread Scheduling in Java

 The JVM defines a notion of thread priority
 Vaguely defined, not necessarily preemptive
 Essentially some “threads” are preferred over others,

but you can’t rely on anything clear
 But for very old ones JVMs do things that one would

expect (e.g., preemptive multi-queue round-robin)

 A thread can yield control of the CPU by calling
Thread.yield() (… But don't do it)

 The thread class has Thread.setPriority() and
Thread.getPriotity()
 Priorities are between Thread.MIN_PRIORITY

(lowest) and Thread.MAX_PRIORITY (highest)

Thread Scheduling in Java
 The JVM uses the user-specified

thread priorities to convey
information to the OS, who makes
the final calls

 Thread scheduling in the JVM is
not portable (i.e., when writing
code you cannot assume anything
about thread scheduling)

 Unless you use ThreadPool, in
which case you can configure
the thread pool to be
scheduled precisely

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

Win XP (and beyond) Scheduling
 Priority-based, time quantum-based, multi-queue, preemptive scheduling

(Section 5.6.2)
 32-level priority scheme: high number, high priority

 Variable class: priorities 1 to 15
 Real-time class: priorities 16 to 31
 (A special memory-management thread runs at priority 0)

 The Win32 API exposes abstract priority concepts to users, which are
translated into numerical priorities

User-settable Priority Class

U
se

r-
se

tta
bl

e
re

la
tiv

e
pr

io
rit

y
w

ith
in

 a
 c

la
ss

Base Priorities
for each class

Win XP (and beyond) Scheduling
 When a thread’s quantum runs out, unless the thread’s in the

real-time class (priority > 15), the thread’s priority is lowered
 This is likely a CPU-bound thread, and we need to keep the system

interactive
 When a thread “wakes up”, its priority is boosted

 It’s likely an IO-bound thread
 The boost depends on what the thread was waiting for

 e.g., if it was the keyboard, it’s definitely an interactive thread and
the boost should be large

 These are the same general ideas as in other OSes (e.g., see
Solaris priority scheeme in textbook): preserving interactivity is a
key concern

 The idle thread:
 Win XP maintains a “bogus” idle thread (priority 1)
 “runs” (and does nothing) if nobody else can run
 Simplifies OS design to avoid the “no process is running” case

Linux Scheduling: 1.2 and 2.2

 The Linux kernel has a long history of
scheduler development

 Kernel 1.2 (1995): simplicity and speed
 Round-Robin scheduling
 Implemented with a circular queue

 Kernel 2.2 (1999): toward sophistication
 Scheduling classes

 real-time, non-preemptible, non-real-time

 Priorities within classes

Linux Priorities
 Priority scheme:

 low value means high priority

Linux Scheduling: 2.4
 2.4: 2001
 The schedule proceeds as a sequence of epochs
 Within each epoch, each task is given a time slice of

some duration
 Time slice durations are computed differently for different

tasks depending on how they used their previous time
slices

 A time slice doesn’t have to be used “all at once”
 A process cant get the CPU multiple times in an epoch,

until its time slice is used

 Once all READY processes have used their time
slice, then the epoch ends, and a new epoch begins
 Of course, some processes are still blocked, waiting for

events, and they’ll wake up during an upcoming epoch

Linux Scheduling: 2.4
 How to compute time slices?

 If a process uses its whole time slice, then it will get the
same one

 If a process hasn’t used its whole time slice (.e.g., because
blocked on I/O) then it gets a larger time slice!

 This may seem counter-intuitive but:
 Getting a larger time slice doesn’t mean you’ll use it if

you’re not READY anyway
 Those processes that block often will thus never user their

(enlarged) time slices
 But, priorities between threads (i.e., how the scheduler

picks them from the READY queue) are computed based
on the time slice duration

 A larger time slice leads to a higher priority

Linux Scheduling: 2.4

 Problem: O(n) scheduling
 At each scheduling event, the scheduler needs to go

through the whole list of ready tasks to pick one to
run

 If n (the number of tasks) is large, then it will take
long to pick one to run

 “Instead of spending your time thinking about it and
wasting time, just run some task already!”

 There were other problems with 2.4 scheduling,
e.g. multi-core machine
 Increasing numbers of cores didn’t make scheduling

easier and schedulers changed dramatically in years

Linux Scheduling: 2.6.0 to 2.6.22
 Kernel 2.6 (2003) tries to resolve the O(n)

problem (… and a few others)

 The so-called “O(1) scheduler”
 Can be seen as implementation tricks so that

one never need to have code that looks like
“for all ready tasks do....”

 During an epoch, a task can be active or
expired
 active task: its time slice hasn’t been fully

consumed
 expired task: has used all of its time slice

Linux Time Slices
 The kernel keeps two arrays of round-robin queues

 One for active tasks: one Round Robin queue per priority level
 One for expired tasks: one Round Robin queue per priority

level

O(1) Scheduling

 The priority array data structure in the Kernel’s
code:

struct prio_array {

int nr_active; // total num of tasks

unsigned long bitmap[5]; // priority bitmap

struct list_head queue[MAX_PRIO]; // the queues

}

 What’s that bitmap thing?
 ICS312 if you're not familiar with bitmaps...

Using a Bitmap for Speed
 The bitmap contains one bit for each priority level

 5*32 = 160 > 141 priority levels
 Initially all bits are set to zero
 When a task of a given priority becomes ready, the corresponding

bit in the bitmap is set to one
 Build a bit mask that looks like 0...010...0
 Do a logical OR

 Finding the highest priority for which there is a ready task becomes
simple: just find the first bit set to 1 in the bitmap

 This doesn’t depend on the number of tasks in the system
 Many ISAs provide an instruction to do just that

 On x86, the instruction’s called bsfl

 Finding the next task to run (in horrible pseudo-code) is then done
easily:

 prio_array.head_queue[bsfl(bitmap)].task_struct
 No looping over all priority levels, so we’re O(1)

Recalculating Time Slices
 When the time slice of a task expires it is moved from the

active array to the expired array
 At this time, the task’s time slice is recomputed

 That way we never have a “recompute all time slices” which would
monopolize the kernel for a while and hinder interactivity

 Maintains the O(1)-time property
 When the active array is empty, it is swapped with the expired

array
 This is a pointer swap, not a copy, so it’s O(1)-time

 Time-slice and priority computations attempt to identify more
interactive processes

 Keeps track of how much they sleep
 Uses priority boosts
 And other bells, and whistles

 All details in “Linux Kernel Development”, Second Edition, by
R. Love (Novell Press)

Linux ≥ 2.6.23
 Problem with the O(1) scheduler: the code in the kernel

became a mess and hard to maintain
 Seems to blur “policy” and “mechanism”?

 CFS: Completely Fair Scheduler
 Developed by the developer of O(1), with ideas from others

 Main idea: keep track of how fairly the CPU has been
allocated to tasks, and “fix” the unfairness

 For each task, the kernel keeps track of its virtual time
 The sum of the time intervals during which the task was given the

CPU since the task started
 Could be much smaller than the time since the task started

 Goal of the scheduler: give the CPU to the task with the
smallest virtual time
 i.e., to the task that’s the least “happy”

Linux ≥ 2.6.23
 Tasks are stored in a red-black tree

 O(log n) time to retrieve the least happy task
 O(1) to update its virtual time once it’s done running for a

while
 O(log n) time to re-insert it into the red-black tree

 As they are given the CPU, tasks migrate from the left
of the tree to the right

 Note that I/O tasks that do few CPU bursts will never
have a large virtual time, and thus will be “high
priority”

 Tons of other things in there controlled by parameters
 e.g., how long does a task run for?

Linux Scheduling
 Not everybody loves CFS

 Some say it just will not work for running thousands of processes in
a “multi-core server” environment

 But then the author never really said it would

 At this point, it seems that having a single scheduler for
desktop/laptop usage and server usage is just really difficult

 Having many configuration parameters is perhaps not helpful
 How do you set them?

 Other schedulers are typically proposed and hotly debated
relatively frequently
 e.g., the BFS (Brain <expletive> Scheduler) for desktop/laptop

machines that tries to be as simple as possible
 One queue, no “interactivity estimators”, ...

Conclusions

 There are many options for CPU scheduling
 Modern OSes use preemptive scheduling
 Some type of multilevel feedback priority

queues is what most OSes do right now
 A common concern is to ensure interactivity

 I/O bound processes often are interactive, and
thus should have high priority

 Having “quick” short-term scheduling is
paramount

	CPU Scheduling
	CPU Scheduling
	CPU-I/O Burst Cycle
	The CPU Scheduler
	Scheduling Decision Points
	Preemptive Scheduling
	Scheduling Objectives
	Scheduling Queues
	Scheduling and Queues
	Short-Term, Long-Term
	Short-Term, Long-Term
	Short-Term Scheduling Algs
	(Non-Preemptive) FCFS
	(Non-Preemptive) FCFS
	Slide 15
	Shortest Job First (SJF)
	Shortest Job First (SJF)
	Slide 18
	Shortest Job First (SJF)
	Predicting CPU burst durations
	Exponential Averaging
	Priority Scheduling
	Round-Robin Scheduling
	RR Scheduling Example
	Picking the Right Quantum
	Multilevel Queue Scheduling
	Multi-Level Queue Example
	Multilevel Feedback Queues
	Multilevel Feedback Queues
	Multilevel Feedback Queues
	What’s a Good Scheduling Algorithm?
	Thread Scheduling in Java
	Thread Scheduling in Java
	Win XP Scheduling
	Win XP Scheduling
	Linux Scheduling: 1.2 and 2.2
	Linux Priorities
	Linux Scheduling: 2.4
	Linux Scheduling: 2.4
	Linux Scheduling: 2.4
	Linux Scheduling: 2.6
	Linux Time Slices
	O(1) Scheduling
	Using a Bitmap for Speed
	Recalculating Time Slices
	Linux ≥ 2.6.23
	Linux ≥ 2.6.23
	Linux Scheduling
	Conclusions

