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Real-Life Deadlock

Three kinds of OS-deadlock solutions: 
(i) have mechanisms so that a deadlock never happens in the first place
(ii) detect that we’re in a deadlock, and do something to fix it
(iii) do nothing and when things don’t work have the “operator” reboot it all



Deadlocks
 Early 20th Century Kansas legislature proposed bill: “When two trains

approach each other at a crossing, both shall come to a full stop and neither
shall start up again until the other has gone” (… likely bogus)

 Deadlock with two threads and two resources (see Figure 7.4: Java example)

Thread #1 Thread #2

lock(A) lock(B)

lock(B) lock(A)

unlock(B) unlock(A)

unlock(A) unlock(B)

 Typically it’s the responsibility of the programmer to avoid deadlocks
 Deadlocks should be rare if the burden is placed on programmers who are highly

motivated to avoid deadlocks
 A manual restart  (i.e., kill-restart) is always an option
 Therefore, avoid making the OS more complicated and let users fend for

themselves
 e.g., Windows/Linux provide no help in this matter

 We’re going to look at what OSes could provide, because understanding this
leads us to understand how to avoid deadlocks in our own programs



System Model
 System consists of

 some resources of different
resource types: R1, R2, ..., Rm

 There could be one or more resource in each type
 e.g., Physical: 4 printers, 2 network cards

 each resource type is protected by an associated lock
 either visible to the application, or within the Kernel
 e.g., when you do an open(), there is a lock in the Kernel for that file

 processes: P1, P2, ..., Pn

 Each process can:
 request a resource of a given type

 And block/wait until one resource instance of that type becomes
available

 use a resource
 release a resource



Deadlock State
 We have a deadlock if every process Pi is waiting for a

resource instance that is being held by another process
 A deadlock can arise only if all four conditions hold

 Mutual Exclusion
 At least one resource is non-sharable: at most one process at a

time can use it 
 Hold-and-Wait

 At least one process is holding one resource while waiting to
acquire others, that are being held by other processes

 No preemption
 A resource cannot be preempted (a process needs to give it up

voluntarily)
 Circular Wait

 There exists a set {P0, P1, …, Pn} of waiting processes such that
 Pi is waiting for a resource that is held by Pi+1, 0 ≤ i < n

 Pn is waiting for a resource that is held by P0



Deadlock State
 The four conditions:

 Mutual Exclusion
 Hold-and-Wait
 No preemption
 Circular Wait

 Note that “circular wait” implies “Hold-and-Wait”
 It’s useful to separate them, as we’ll see later

 The four conditions together are only a necessary condition
 If the four conditions hold, there may be a deadlock
 If there is a deadlock, then the four conditions hold



Resource Allocation Graphs

 Describing the system can be done precisely and
easily with a system resource-allocation graph

 The graph contains:
 A set of vertices, V, that contains

 One vertex for each process: {P1, P2, ..., Pn}

 One vertex for each resource type: {R1, R2, ..., Rm}
 Which indicates the number of resource instances for that type

Pi

vertex for process Pi

vertex for resource type Rj

with 3 resource instances

Rj



Resource Allocation Graphs
 The graph contains:

 A set of directed edges, E, that contains
 request edge: from Pi to Rj if process Pi has requested a resource of type Rj

 points to the resource type rectangle

 assignment edge: from a Rj instance to process Pi is Pi holds a resource
instance of type Rj

 points from a dot inside the resource type rectangle

 If a resource request can be fulfilled, then a request edge is
transformed into an assignment edge

 When a process releases a resource, the assignment edge is deleted

Pi
Rj

Pi

Rj



Example Resource Graph

 Figure 7.1



Graphs and Deadlocks

 Theorem:
 If the graph contains no (directed) cycle, then

there is no deadlock
Note: If the graph contains a cycle, then there may be
a deadlock (P=>Q does not mean that Q=>P)

 If there is only one resource instance per
resource type, then we have a stronger
Theorem:
 The existence of a cycle is a sufficient and

necessary condition for the existence of a
deadlock

 Each process involved in the cycle is deadlocked



Cycle and Deadlock

 Figure 7.2



Cycle and No Deadlock

 Figure 7.3



 8 resources
 2 threads
 Each thread does:

while (true)  {

       for (int i=0; i < M; i++) 

<grab a resource>

<do some work>

for (int i=0; i < M; i++)

<release a resource>

}

Question: What is the largest M value to guarantee no deadlocks?

(should we attempt an in-class live simulation?)

Simple Example

P1 P2

8 resources

MM



Deadlock Handling
 What do we do about deadlocks?

 We can prevent deadlocks
 Deadlock prevention

 Ensure that one of the four conditions never holds

 Deadlock avoidance
 Use information about future resource usage of processes

 We can identify deadlocks and take action
 Deadlock detection and recovery

 An algorithm for deadlock detection
 A recovery strategy

 We can do nothing and hope
 That’s what Windows, Linux, and the JVM do
 Eventually the deadlock may snowball until the system no

longer functions and requires manual intervention (restart)



Deadlock Prevention
 The four conditions:

 Mutual Exclusion
 Hold-and-Wait
 No preemption
 Circular Wait

 Getting rid of Mutual Exclusion?
 In general we cannot design a system in which we don’t have

some type of mutual exclusion on some types of resources
 Getting rid of No Preemption?

 This would force resource releases from a waiting process (A)
that holds a resource needed by another process (B)

 A is restarted later and must reacquire all its resources
 This is easily done for resource that have an easily

saved/restored state (e.g., CPU with registers)
 But cannot be done in general as the processes may be in the

middle of doing something that leaves an inconsistent state



Getting Rid of Hold and Wait
 A process cannot request a resource if it holds any other

resource
 Option #1: a process could acquire all the resources it needs

before it begins execution
 Problem: low resource utilization

 A resource is held during the whole process lifetime even if it’s
used for a tiny fraction of it

 Option #2: a process can request a (bulk of) resource(s) only if it
holds no other resources

 Problem: may not be possible to implement every process as a
sequence of “acquire N / release N” steps

 Problem in both options: starvation is possible
 Some other process may always hold one of the needed resources

and acquiring them one after the other is the only way



Getting Rid of Circular Wait
 Preventing cycles: 

 Impose a total ordering on resource types
 An integer value is assigned to each type

 A process must request resources by increasing type order
 or, must release all resources of higher order before requesting a

resource of lower order
 If several instances of the same resources are needed, then a

single request for all of them must be issued
 The above will prevent circular wait

 Simple proof by contradiction in Section 7.4.4
 This works trivially for the two-lock deadlock (A < B)

Thread #1 Thread #2

lock(A) lock(B)

lock(B) lock(A) illegal

unlock(B) unlock(A)

unlock(A) unlock(B)



Getting Rid of Circular Wait
 It is up to application developers to follow the order

 Otherwise code will simply say “fail”
 It may not be easy to define the order a-priori

 If some process may need resource type A before type B,
and some other may need resource type B before type A,
then you can’t define the order

 Hard to figure out an order for all system resources
 FreeBSD provides an order-verifier for locks

 It records lock usage order
 And then later enforces the recorded order
 Pretty simple to implement



Deadlock Avoidance

 Idea: if I know what resources a process will need
in the future, perhaps I can anticipate deadlocks

 A simple and useful model: each process
declares the maximum number of resource of
each type that it may need

 Resource state: 
 The number of available resources in each type
 The number of assigned resources in each type
 The maximum number of resources of each type for

each process

 Goal: ensure that we are always in a safe state



Safe State
 Definition of a safe state: there exists a sequence <P1, P2, …,

Pn> of ALL the  processes  is the systems such that

 for each Pi, the resources that Pi can still request can be
satisfied by currently available resources + resources held by all
the Pj, with j < i

 That is (for j < i):
 If Pi resource needs are not immediately available, then Pi must

wait until all Pj have finished

 When each Pj is finished, Pi can obtain needed resources,
execute, return allocated resources, and eventually terminate

 When Pi terminates, Pi +1 can obtain its needed resources, and so
on... 

 Such a sequence is called a safe sequence

 A state without a safe sequence is called unsafe



Safe State
 Theorem:

 If there is a deadlock, then the state is unsafe
 If the state is unsafe, then there may be a deadlock

 Goal: never enter an unsafe state, period
 And conservatively preclude non-deadlocked unsafe states



Example from Section 7.5.1
 12 resources of the same type, 9 initially assigned
 3 processes:

 A safe sequence: <P1, P0, P2>

 If one gives 1 resource to P2, then we get to an unsafe state
 P2 holds 3, P1 gets and releases 2, then neither P0 nor P2 can get

everything they need
 Looking at state safety could be done using a brute-force (high-

complexity) algorithm

Maximum Need Currently Holds

P0    10 5

P1      4 2

P2      9 2



Graph-based Avoidance Alg.
 If each resource type has only one instance, then it is easy

to avoid deadlocks
 A more complex algorithm called the “Banker’s algorithm”

must be used for multiple instances
 Build a resource allocation graph, but add claim edges

 edges that correspond to potential future resource needs (all
of them)

 depicted with a dashed line
 when a resource is assigned, replace the claim edge with an

assignment edge
 Grant a resource allocation only if it does not create a cycle

in the resource allocation graph
 The cycle may contain claim edges
 Detecting a cycle in a graph with n vertices can be done in n2 

time



Graph Example

P2 requests R2

 There is a cycle in the graph
 The request is denied

 It could lead to a deadlock



Deadlock Detection-Recovery

 Detection-Recovery:
 Allow system to enter a deadlock state
 Detect the deadlock state
 Take some appropriate action to recover

 In the case of one instance per resource type,
detection is simple:
 Build the resource allocation graph
 Run an O(n2) cycle-detection algorithm

 Otherwise a more complex algorithm is needed
 Uses ideas from the Banker’s algorithm  (see

Section 7.5.3 if interested)



Deadlock Detection Example

 Figure 7.9



Deadlock Detection-Recovery

 How often should one run the detection
algorithm?
 Run it often: expensive, but good if deadlocks

are frequent
 extreme: for each resource request, in which case

one knows which process “caused” the deadlock

 Run it rarely: cheap, but bad if deadlocks are
frequent

 and it will be difficult to tell which process “caused”
the deadlock



Deadlock Detection-Recovery

 What about recovery?
 Two kinds of actions

 Process termination
 Resource preemption

 Process termination
 Kill all deadlocked processes

 May be wasteful
 Kill one process at a time until the deadlock disappears

 High overhead because deadlock detection algorithm is
run at each step (but the system was frozen anyway)

 Killing a process could be tricky
 The process may be in the middle of something that

would leave an inconsistent state, that must be fixed



Deadlock Detection-Recovery

 Resource Preemption
 Selecting a victim: which resource/process needs

to be preempted
 Rollback: when preempting a resource from a

process, that process must be rolled back
 Simple solution: restart the process from scratch
 May require inconsistent state cleanup

 Starvation: ensure that one process doesn’t see its
resource preempted from it forever



Conclusion

 Three methods
 (i) Deadlock prevention/avoidance
 (ii) Deadlock detection-recovery
 (iii) Do nothing and let users deal with it

 The solutions we have discussed for (i) and (ii)
above are interesting

 Most argue that none of them covers all the
bases

 One could combine them all and be effective, but
at the cost of much increased Kernel complexity

 Therefore, in practice, it’s option (iii)
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