
ICS332
Operating Systems

Deadlocks

Real-Life Deadlock

Three kinds of OS-deadlock solutions:
(i) have mechanisms so that a deadlock never happens in the first place
(ii) detect that we’re in a deadlock, and do something to fix it
(iii) do nothing and when things don’t work have the “operator” reboot it all

Deadlocks
 Early 20th Century Kansas legislature proposed bill: “When two trains

approach each other at a crossing, both shall come to a full stop and neither
shall start up again until the other has gone” (… likely bogus)

 Deadlock with two threads and two resources (see Figure 7.4: Java example)

Thread #1 Thread #2

lock(A) lock(B)

lock(B) lock(A)

unlock(B) unlock(A)

unlock(A) unlock(B)

 Typically it’s the responsibility of the programmer to avoid deadlocks
 Deadlocks should be rare if the burden is placed on programmers who are highly

motivated to avoid deadlocks
 A manual restart (i.e., kill-restart) is always an option
 Therefore, avoid making the OS more complicated and let users fend for

themselves
 e.g., Windows/Linux provide no help in this matter

 We’re going to look at what OSes could provide, because understanding this
leads us to understand how to avoid deadlocks in our own programs

System Model
 System consists of

 some resources of different
resource types: R1, R2, ..., Rm

 There could be one or more resource in each type
 e.g., Physical: 4 printers, 2 network cards

 each resource type is protected by an associated lock
 either visible to the application, or within the Kernel
 e.g., when you do an open(), there is a lock in the Kernel for that file

 processes: P1, P2, ..., Pn

 Each process can:
 request a resource of a given type

 And block/wait until one resource instance of that type becomes
available

 use a resource
 release a resource

Deadlock State
 We have a deadlock if every process Pi is waiting for a

resource instance that is being held by another process
 A deadlock can arise only if all four conditions hold

 Mutual Exclusion
 At least one resource is non-sharable: at most one process at a

time can use it
 Hold-and-Wait

 At least one process is holding one resource while waiting to
acquire others, that are being held by other processes

 No preemption
 A resource cannot be preempted (a process needs to give it up

voluntarily)
 Circular Wait

 There exists a set {P0, P1, …, Pn} of waiting processes such that
 Pi is waiting for a resource that is held by Pi+1, 0 ≤ i < n

 Pn is waiting for a resource that is held by P0

Deadlock State
 The four conditions:

 Mutual Exclusion
 Hold-and-Wait
 No preemption
 Circular Wait

 Note that “circular wait” implies “Hold-and-Wait”
 It’s useful to separate them, as we’ll see later

 The four conditions together are only a necessary condition
 If the four conditions hold, there may be a deadlock
 If there is a deadlock, then the four conditions hold

Resource Allocation Graphs

 Describing the system can be done precisely and
easily with a system resource-allocation graph

 The graph contains:
 A set of vertices, V, that contains

 One vertex for each process: {P1, P2, ..., Pn}

 One vertex for each resource type: {R1, R2, ..., Rm}
 Which indicates the number of resource instances for that type

Pi

vertex for process Pi

vertex for resource type Rj

with 3 resource instances

Rj

Resource Allocation Graphs
 The graph contains:

 A set of directed edges, E, that contains
 request edge: from Pi to Rj if process Pi has requested a resource of type Rj

 points to the resource type rectangle

 assignment edge: from a Rj instance to process Pi is Pi holds a resource
instance of type Rj

 points from a dot inside the resource type rectangle

 If a resource request can be fulfilled, then a request edge is
transformed into an assignment edge

 When a process releases a resource, the assignment edge is deleted

Pi
Rj

Pi

Rj

Example Resource Graph

 Figure 7.1

Graphs and Deadlocks

 Theorem:
 If the graph contains no (directed) cycle, then

there is no deadlock
Note: If the graph contains a cycle, then there may be
a deadlock (P=>Q does not mean that Q=>P)

 If there is only one resource instance per
resource type, then we have a stronger
Theorem:
 The existence of a cycle is a sufficient and

necessary condition for the existence of a
deadlock

 Each process involved in the cycle is deadlocked

Cycle and Deadlock

 Figure 7.2

Cycle and No Deadlock

 Figure 7.3

 8 resources
 2 threads
 Each thread does:

while (true) {

 for (int i=0; i < M; i++)

<grab a resource>

<do some work>

for (int i=0; i < M; i++)

<release a resource>

}

Question: What is the largest M value to guarantee no deadlocks?

(should we attempt an in-class live simulation?)

Simple Example

P1 P2

8 resources

MM

Deadlock Handling
 What do we do about deadlocks?

 We can prevent deadlocks
 Deadlock prevention

 Ensure that one of the four conditions never holds

 Deadlock avoidance
 Use information about future resource usage of processes

 We can identify deadlocks and take action
 Deadlock detection and recovery

 An algorithm for deadlock detection
 A recovery strategy

 We can do nothing and hope
 That’s what Windows, Linux, and the JVM do
 Eventually the deadlock may snowball until the system no

longer functions and requires manual intervention (restart)

Deadlock Prevention
 The four conditions:

 Mutual Exclusion
 Hold-and-Wait
 No preemption
 Circular Wait

 Getting rid of Mutual Exclusion?
 In general we cannot design a system in which we don’t have

some type of mutual exclusion on some types of resources
 Getting rid of No Preemption?

 This would force resource releases from a waiting process (A)
that holds a resource needed by another process (B)

 A is restarted later and must reacquire all its resources
 This is easily done for resource that have an easily

saved/restored state (e.g., CPU with registers)
 But cannot be done in general as the processes may be in the

middle of doing something that leaves an inconsistent state

Getting Rid of Hold and Wait
 A process cannot request a resource if it holds any other

resource
 Option #1: a process could acquire all the resources it needs

before it begins execution
 Problem: low resource utilization

 A resource is held during the whole process lifetime even if it’s
used for a tiny fraction of it

 Option #2: a process can request a (bulk of) resource(s) only if it
holds no other resources

 Problem: may not be possible to implement every process as a
sequence of “acquire N / release N” steps

 Problem in both options: starvation is possible
 Some other process may always hold one of the needed resources

and acquiring them one after the other is the only way

Getting Rid of Circular Wait
 Preventing cycles:

 Impose a total ordering on resource types
 An integer value is assigned to each type

 A process must request resources by increasing type order
 or, must release all resources of higher order before requesting a

resource of lower order
 If several instances of the same resources are needed, then a

single request for all of them must be issued
 The above will prevent circular wait

 Simple proof by contradiction in Section 7.4.4
 This works trivially for the two-lock deadlock (A < B)

Thread #1 Thread #2

lock(A) lock(B)

lock(B) lock(A) illegal

unlock(B) unlock(A)

unlock(A) unlock(B)

Getting Rid of Circular Wait
 It is up to application developers to follow the order

 Otherwise code will simply say “fail”
 It may not be easy to define the order a-priori

 If some process may need resource type A before type B,
and some other may need resource type B before type A,
then you can’t define the order

 Hard to figure out an order for all system resources
 FreeBSD provides an order-verifier for locks

 It records lock usage order
 And then later enforces the recorded order
 Pretty simple to implement

Deadlock Avoidance

 Idea: if I know what resources a process will need
in the future, perhaps I can anticipate deadlocks

 A simple and useful model: each process
declares the maximum number of resource of
each type that it may need

 Resource state:
 The number of available resources in each type
 The number of assigned resources in each type
 The maximum number of resources of each type for

each process

 Goal: ensure that we are always in a safe state

Safe State
 Definition of a safe state: there exists a sequence <P1, P2, …,

Pn> of ALL the processes is the systems such that

 for each Pi, the resources that Pi can still request can be
satisfied by currently available resources + resources held by all
the Pj, with j < i

 That is (for j < i):
 If Pi resource needs are not immediately available, then Pi must

wait until all Pj have finished

 When each Pj is finished, Pi can obtain needed resources,
execute, return allocated resources, and eventually terminate

 When Pi terminates, Pi +1 can obtain its needed resources, and so
on...

 Such a sequence is called a safe sequence

 A state without a safe sequence is called unsafe

Safe State
 Theorem:

 If there is a deadlock, then the state is unsafe
 If the state is unsafe, then there may be a deadlock

 Goal: never enter an unsafe state, period
 And conservatively preclude non-deadlocked unsafe states

Example from Section 7.5.1
 12 resources of the same type, 9 initially assigned
 3 processes:

 A safe sequence: <P1, P0, P2>

 If one gives 1 resource to P2, then we get to an unsafe state
 P2 holds 3, P1 gets and releases 2, then neither P0 nor P2 can get

everything they need
 Looking at state safety could be done using a brute-force (high-

complexity) algorithm

Maximum Need Currently Holds

P0 10 5

P1 4 2

P2 9 2

Graph-based Avoidance Alg.
 If each resource type has only one instance, then it is easy

to avoid deadlocks
 A more complex algorithm called the “Banker’s algorithm”

must be used for multiple instances
 Build a resource allocation graph, but add claim edges

 edges that correspond to potential future resource needs (all
of them)

 depicted with a dashed line
 when a resource is assigned, replace the claim edge with an

assignment edge
 Grant a resource allocation only if it does not create a cycle

in the resource allocation graph
 The cycle may contain claim edges
 Detecting a cycle in a graph with n vertices can be done in n2

time

Graph Example

P2 requests R2

 There is a cycle in the graph
 The request is denied

 It could lead to a deadlock

Deadlock Detection-Recovery

 Detection-Recovery:
 Allow system to enter a deadlock state
 Detect the deadlock state
 Take some appropriate action to recover

 In the case of one instance per resource type,
detection is simple:
 Build the resource allocation graph
 Run an O(n2) cycle-detection algorithm

 Otherwise a more complex algorithm is needed
 Uses ideas from the Banker’s algorithm (see

Section 7.5.3 if interested)

Deadlock Detection Example

 Figure 7.9

Deadlock Detection-Recovery

 How often should one run the detection
algorithm?
 Run it often: expensive, but good if deadlocks

are frequent
 extreme: for each resource request, in which case

one knows which process “caused” the deadlock

 Run it rarely: cheap, but bad if deadlocks are
frequent

 and it will be difficult to tell which process “caused”
the deadlock

Deadlock Detection-Recovery

 What about recovery?
 Two kinds of actions

 Process termination
 Resource preemption

 Process termination
 Kill all deadlocked processes

 May be wasteful
 Kill one process at a time until the deadlock disappears

 High overhead because deadlock detection algorithm is
run at each step (but the system was frozen anyway)

 Killing a process could be tricky
 The process may be in the middle of something that

would leave an inconsistent state, that must be fixed

Deadlock Detection-Recovery

 Resource Preemption
 Selecting a victim: which resource/process needs

to be preempted
 Rollback: when preempting a resource from a

process, that process must be rolled back
 Simple solution: restart the process from scratch
 May require inconsistent state cleanup

 Starvation: ensure that one process doesn’t see its
resource preempted from it forever

Conclusion

 Three methods
 (i) Deadlock prevention/avoidance
 (ii) Deadlock detection-recovery
 (iii) Do nothing and let users deal with it

 The solutions we have discussed for (i) and (ii)
above are interesting

 Most argue that none of them covers all the
bases

 One could combine them all and be effective, but
at the cost of much increased Kernel complexity

 Therefore, in practice, it’s option (iii)

	Deadlocks
	Real-life Deadlock
	Deadlocks
	System Model
	Deadlock State
	Deadlock State
	Resource Allocation Graphs
	Resource Allocation Graphs
	Example Resource Graph
	Graphs and Deadlocks
	Cycle and Deadlock
	Cycle and No Deadlock
	Simple Example
	Deadlock Handling
	Deadlock Prevention
	Getting Rid of Hold and Wait
	Getting Rid of Circular Wait
	Getting Rid of Circular Wait
	Deadlock Avoidance
	Safe State
	Safe State
	Example from Section 7.5.1
	Graph-based Avoidance Alg.
	Graph Example
	Deadlock Detection-Recovery
	Deadlock Detection Example
	Deadlock Detection-Recovery
	Deadlock Detection-Recovery
	Deadlock Detection-Recovery
	Conclusion

