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Introduction to Synchronization

 Synchronization is covered in depth in ICS432
 It’s an important topic and it’s difficult to do it

justice in just a few lectures in an OS course
 Although that’s often done, sadly

 So we’re only going to see the very basic
concepts here, but get very little hands-on
experience with synchronization
 Take ICS432 if you do want such experience!!

 As a result, we’ll only see a subset of the
content in Chapter 5
 Hence the very specific reading assignment



Cooperating Processes/Threads
 Having execution units run concurrently is useful

 Structuring an application as independent but
cooperating entities can be very convenient

 Better utilization of hardware resources (e.g.,
cores)

 Different ways of doing concurrency
 Multiple processes (with message-passing and/or

shared memory)
 Multiple threads in a single address space
 All of the above together! (processes and threads

are tasks)



Concurrency
 Two kinds of concurrency:
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false concurrency within a core: illusion of concurrency provided by the OS
(e.g. green and blue task)

true concurrency across cores
              (e.g., green and yellow task)



True/False Concurrency
 The programmer shouldn’t have to care/know whether

concurrency will be true or false
 Typically, the programmer doesn’t know on which core the

program will run in the end!
 A concurrent program with 10 tasks should work on a

single-core processor, a quad-core processor, a 32-core
processor, etc.

 However, better performance with true concurrency
 We’ve talked about true concurrency across cores, but

there could be true concurrency between any two hardware
resources

 e.g., between the network interface the core
 e.g., between the disk and the network interface



Let's implement a... Counter

 Two Threads will access the Counter concurrently
 One will decrement the Counter value by 1 n times
 One will increment the Counter value by 1 n times

 Let's code it...
 Run for n=10, n=100, n=1000...
 Add debugging messages
 Run again for n=10, n=100, n=1000...

See Counter.java in ics332.rc.v1



Race Condition

What we observed:
There is a race condition 

(i.e., the program is buggy)
The bug did manifest itself by several lost

updates
 It may not manifest itself, yet the program is still

buggy



Concurrency Dangers

 There are two main problems with concurrent
programs:
 Race Conditions: a bug that leads the program to

gives unpredictably incorrect results
 Typical with processes/threads sharing memory

 Deadlocks: the program blocks forever
 Possible in any distributed system

 Let’s first talk about Race Conditions
 Arguably the most common/vexing problems
 You will, unfortunately, encounter them
 Deadlocks are in their own lectures notes



Why Race Conditions?
 Race conditions can happen with false or true concurrency

 Statistically they’re most likely to manifest themselves with true
concurrency

 The counter += increment and counter -= increment statements
are written in a high-level language

 The compiler translates them into machine code (or byte code if
we are talking Java)... Let's have look at the assembly code

 On a Load/Store architecture (RISC), the code would then look
like:                                    (check it yourself: gcc -S some_add_function.c)

; Thread #1
load R1, [@]
inc R1
store [@], R1

; Thread #2
load R1, [@]
dec R1
store [@], R1



Why Race Conditions?
 Illusion of concurrency: the OS context-switches threads rapidly
 We have 2 sets of 3 instructions, and thus many (?) possibilities
 Three possible execution paths

load R1, [@]
inc R1
<# Context-switch #>
       loadR1, [@]

dec R1
store [@], R1

<# Context-switch #>
store [@], R1

load R1, [@]
inc R1
<# Context-switch #>

load R1, [@]
dec R1

<# Context-switch #>
store [@], R1

store [@], R1

load R1, [@]
<# Context-switch #>

load R1, [@]
dec R1

<# Context-switch #>
inc R1
<# Context-switch #>

store [@], R1
<# Context-switch #>
store [@], R1

Important: R1 is not the same as R1
They are both register values into logical register sets (i.e.,
inside a data structure in the OS)



Why Race Conditions?

load R1, [@]   // R1 = 5  
inc R1      // R1 = 6
load R1, [@]    // R1 = 5
dec R1              // R1 = 4
store [@], R1    // [@] = 4
store [@], R1    // [@] = 6

load R1, [@]    // R1 = 5
inc R1              // R1 = 6
load R1, [@]    // R1 = 5
dec R1                   // R1 = 4
store [@], R1    // [@] = 6
store [@], R1    // [@] = 4

load R1, [@]    // R1 = 5
load R1, [@]    // R1 = 5
dec R1              // R1 = 4
inc R1              // R1 = 6
store [@], R1    // [@] = 4
store [@], R1    // [@] = 6

Let’s assume that initially  [@] = 5

We would expect [@] to be 5 at the end
But we get 4 or 6



Lost Update

 In general, when a thread does “x++” and
another does “x--” three things can happen
 Both updates go through, the x is unchanged
 The “x++” update is lost, and the value of x is

decremented only
 The “x--” update is lost, and the value of x is

incremented only



Race Condition Example

 Assume we have two global variables a and b, initially both set
to 1

 Thread #1:

a++;

b = a+2;
 Thread #2:

a--;
 Once both threads are finished, the main thread prints the

value of a and b
 Question: what are the possible values?



a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2

 First thing to do: come up with all possible interleaving
of the instructions assuming that all instruction is
executes entirely without being interrupted

a++;

b = a + 2;

a--;

a--;

a++;

b = a + 2;

a--;

a++;

b = a + 2;

a--;



a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2

 First thing to do: come up with all possible interleaving
of the instructions assuming that all instruction is
executes entirely without being interrupted

a++;

b = a + 2;

a--;

a--;

a++;

b = a + 2;

a--;

a++;

b = a + 2;

a--;

a = 1, b = 3 a = 1, b = 3 a = 1, b = 4



a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2

 Second thing to do: lost updates
 Each line of code consists of multiple “hardware” instructions

 In this case: bad interaction between “a++” and “a--”
 Result: a = 2

 “a--” reads value 1, computes 0, gets interrupted
 “a++” reads value 1, computes 2, gets interrupted
 “a--” writes value 0
 “a++” writes value 2, overwriting the 0

 Result: a = 0
 Same as “a=2” just different order

 Result: a =1
 Everything went well, without lost update

 We end up with two new possible output:

a--;

a = 0, b = 2 a = 2, b = 4



a=1; b=1;
a++;
b = a + 2;

Thread #1 Thread #2
a--;

a = 1, b = 3

a = 1, b = 3

a = 1, b = 4

a = 0, b = 2

a = 2, b = 4

 Output produced for all possible interleaving of
lines of code
 Can be considered a bug or not depending

on what you application does
 An application must not necessarily be 100%

deterministic to be correct acceptable
 Input could be random anyway

 Output produced due to the lost update
problem
 Typically considered a bug because a

has a value different from 1 after “a++”
and “a--” in the code, and b can take
value 2 which likely makes no sense



Let’s try this program...

 RaceCondition2.java on the Web site
 Let’s run it 1000 times and see how many

different outputs we get...
 Let’s get this started and check back on it in a

while....



Race Conditions Debugging = Nightmare

 A code may be working fine a million times, then fail once. Will it
take one more million times to reproduce the failure?

 If you modify the code (e.g., adding a few print statements), or if
you run in debugging mode, the race condition may no longer
manifest itself or manifest itself more

 The famous “I just added a print and everything works!”
 If you write code, run it, and it works, you don’t really know

whether you’ve written a bug-free program
 Typically true (even ith 100% coverage), but exacerbated

with race conditions
 You can prove a program wrong, but not a program right!

 Non-deterministic bugs are much harder to identify and fix
 So what can/do we do?



Critical Section
 A part of the source code where

a race condition can happen is
called a critical section

– It doesn’t have to be a contiguous section
of code

– In the example here, we have a 3-zone
critical section

 For correctness only one thread 
can execute the code in a critical
section at a time

– If thread A is already executing one of the
“red zones”, then all other threads must be
blocked before being allowed to enter the
same (or any) red zone

– Only one will be allowed to enter once

thread A leaves the red zone it was in 



Critical Section

 We can have multiple
critical sections
 One 3-zone “red” critical

section
 One 2-zone “green”

critical section 

 In our initial example,
we’d simply put the
count++ and count--
statements in a (possibly
multi-zone) critical
section



Critical Section

 Formally, we want three properties of critical
sections:

 Mutual Exclusion: if thread T is in the critical section,
then no other thread can be in it.

 Progress: if thread T wants to enter into a critical section
it will enter it some time in the future

 Bounded Waiting: once thread T has declared intent to
enter the critical section, there must be a bound on the
number of threads that can enter the critical section
before T

 Note that there is no assumption regarding the
elapsed time spent by each involved process in
the critical section



Critical Section: Common Misconception(s)
 A Critical Section corresponds to sections of code 

(i.e., the text segment)
 It doesn’t correspond to data (i.e., variables)

 Even though the section of code is typically one that
modifies particular variables

 When we say “we need to protect variable x against
race conditions” it means “we need to look at the
entire code, see where x is modified, and put all those
places in the SAME critical section”

 If software engineering is well-done, modification of a
single variable doesn’t happen all over the code

 And maybe now you see why global variables are “evil”
 It is a misconception that critical sections are attached

to variables



From the OS point of view...
 What if a context-switch happens during a system call?
 Non-preemptive kernels do did not allow that

● The thread runs until it willingly exists kernel mode (or yields
control of the CPU)

● No race condition!
● Simple

 Preemptive kernels do allow a thread executing kernel
code (in kernel mode) to be preempted

● There can be race conditions
● More powerful
● Better for “real-time” programming as a “real-time” thread

can preempt a thread running in kernel mode
● Should be more responsive for the same reason

 Modern kernels are preemptive



Critical Sections and the Kernel
 On modern OSes, multiple threads can be in the kernel

 User Threads that are doing a system call and are in kernel
mode

 System Threads doing useful system things
 Therefore, the kernel is subject to race conditions

 We’ve seen that kernel debugging is hard, that race condition
debugging is hard, so we don’t want race conditions in the kernel

 Example: the kernel maintains many data structures
 e.g., the list of open files

 The list must be updated each time a file is opened or closed
 This is very much like the Counter example

 e.g., the list of memory allocations
 e.g., the list of processes
 e.g., the list of interrupt handlers

 The Kernel developer must avoid all race conditions for
access to these data structures



Synchronization Implementation

 What we need is a way to implement enter_critical_section() and
leave_critical_section() to lock and unlock the access to the critical
section

 There are some pure-software “solutions” (mostly historical)
 They can be very complicated
 They’re not guaranteed to work on modern architecture
 See Section 6.3 in the book if interested

 What we need is help from the hardware to provide atomic (non-
interruptible elementary) instruction(s)

 Wait! What about disabling all interrupts?
 If you allow whatever user process to disable interrupts, what tells you

it will enable them afterwards?
 What if interrupts are needed for other purposes, such as a bunch of

timers?
 Conclusion: although inside the kernel one could disable interrupts for

specific purposes, one cannot use this mechanism in general



Atomic Instructions and Locks
 Modern processors offer atomic instructions

 Instructions that are uninterruptible from issue to completion

 With atomic instructions it is easy to implement the “lock” abstraction
 A lock is an abstract data type with two methods: lock() and unlock()

 To “acquire” and “release” the lock

 A critical section is defined as the segments of code in between pairs
of lock/unlock calls for a given lock

 Example

Lock mutex = new Lock(); // mutex = MUTual EXclusion

...

mutex.lock();

 // All code here is part of the critical section defined by mutex

mutex.unlock();



Short Critical Sections

 Critical sections should be as short as
possible
 Not in lines of code, but in time to run these lines

 Long critical sections: only one thread can do
work for a while, so we have reduced
parallelism
 Extreme situation: the whole code is critical
 Not a good idea in the case of multiple cores

 Goal: Many small and short critical sections
(with different locks)
 Many threads can do useful work simultaneously



What do Locks do?
 Two kinds of lock implementations
 Spin lock: The thread constantly checks whether the lock is

available in a while loop
 Prevents others (e.g., unrelated) threads from using CPU cycles

 Can be a big problem on a single-core system
 Wastes power and dissipates heat
 But the thread will acquire the lock “as soon as” it is released
 Very little overhead as no kernel involvement

 Blocking lock: The thread asks the OS to be put in the
Waiting/Blocked state and the OS will make the thread Ready
whenever the lock has been released by another thread

 Has higher overhead as system calls and running kernel code is
involved, (minimizing locking/unlocking overhead is important)

 But it does not waste CPU cycles by “spinning”



Spin vs. Blocking Lock

 Spinlocks are very useful for (short) critical
sections
 Burn only a few cycles, but provide fast

response time because they do not involve the
kernel

 If your critical section is “x++”, definitely use a
spinlock, not a blocking lock

 Spin locks are used inside the kernel for speed
 Most kernels provide a blocking lock

abstraction
 To be used for long(er) critical sections



Thread Synchronization?
 It may be tempting to use locks for having two threads communicate

 Thread A waits for an “event” by doing lock(x);
 Thread B signals the “event” by doing unlock(x);

 This is not a good idea, and a separate abstraction is needed
 This abstraction is called a condition variable
 It provides two mechanisms:
wait(): Ask the kernel to be put in the Blocked state
signal() and signal_all(): Unblock a (all) blocked thread(s) 

 i.e., tell the OS that that thread is runnable again
 Does not mean that the thread calling signal() relinquishes the CPU

immediately: it’s only about some threads changing state
 Conceptually, the kernel has a queue of blocked threads for each condition

variable

Thread #1
...
cond.wait();
...

Thread #2
...
cond.signal();
...



Condition Variables and Locks
 If a thread acquires a lock, and then calls wait() on a condition

variable, then it is blocked and nobody else can get the lock!
 General rule: don’t go to sleep while you’re holding a resource that

could let a bunch of people do useful work (i.e., a lock)
 To enforce this, a condition variable is associated with a lock, and

wait() temporarily releases the lock
 This is safe because while a thread sleeps, it’s not doing

anything at all
 Pseudo-code for wait:

void wait(cond_t condition, lock_t mutex) {

 unlock(mutex);

<ask the OS to put me into the blocked state and to unblock me when 
the event “condition” is signaled>

lock(mutex);

}



Classical Synchronization Problems

 To explain/understand synchronization, many
typical problems are used

 Some are things you’ll implement often
 Producer-Consumer, Reader-Writer, Bank Account, ...

 Others are interesting metaphors
 Dining philosophers, Barber shop, ...

 Some are surprisingly difficult and finding good
solutions has occupied many computer scientists
 Much more in ICS432
 You can read some of the book’s content if you want

 But there is much more to it anyway



Back to the Counter example

Let's make our Counter thread-safe
java.util.concurrent.locks.Lock

(No need for conditional variable here but they exist in
Java)

See Counter.java in ics332.rc.v2 for spin lock

See Counter.java in ics332.rc.v3 for blocking lock

 Run again for n=10, n=100, n=1000...



Monitors
 Writing concurrent programs with locks and condition

variables is very error prone
 Typically, either you’re implementing a version of one of the well-known

problems, or you’re introducing concurrency bugs
 At least as a beginner concurrent programmer

 And even though, the producer-consumer wasn’t super easy either
 In the 70s, Hoare / Brinch-Hansen proposed the concept of a

Monitor
 A monitor is an abstract data type representing a shared

“resource”
 e.g., a class/object

 It is a construct of a programming language
 Java implements monitors

 You can implement Lock and CondVar with Java monitors,
but few people do this and just use monitors directly



Monitors
 There is nothing magical here, we still need the two basic

functionalities of mutual exclusion and waiting/signaling
 Monitors have the same “power” as other synchronization

abstractions such as locks and condition variables
 But monitors constrain several aspects

 Condition variables are not visible outside the monitor
 They are hidden/encapsulated
 One interacts with them via special monitor operations

 Mutual exclusion is implicit
 Monitor operations execute by definition in mutual exclusion

 These apparently innocuous properties make writing concurrent
code less error-prone 

 The programmer shouldn’t have to deal with lock, unlock, wait, and
signal

 The book describes Monitors in Section 6.7 in detail
 Let’s talk about how Java does synchronization with monitors (Section 6.8)



Synchronization in Java
 Unbeknownst to you, all Java objects you have used in

your life have have a lock and a condition variable “hidden”
inside of them
 And implement lock- and condvar-like methods/capabilities

 To ensure mutual exclusion, a method can be declared as
synchronized:
 e.g., public synchronized void addItem(Item E)

 All synchronized methods in a class are executed in
mutual exclusion
 This is sometimes overkill or downright a hindrance, so one can

also ensure mutual exclusion for a block of code or for a class
 See ICS 432 

 Every object implements wait(), notify(), and notifyAll()



Back to the Counter example
Java-style

 Using synchronized methods

See Counter.java in ics332.rc.v4
 Using synchronized statements (intrinsic locks)

See Counter.java in ics332.rc.v5

 Run again for n=10, n=100, n=1000...



Back to the Counter example:
ultimate Java-style

 Use Atomic objects

See Counter.java in ics332.rc.v6

 Run again for n=10, n=100, n=1000...

 Check the java.util.concurrent packages



Priority Inversion
 Going back toward the OS, we have seen that processes/threads can

have different priorities
 Let’s just say that a higher priority process, if ready, always runs before a

lower priority process (like in priority scheduling)
 Important: Processes, even if their code doesn’t lead to synchronization

problems, use data structures in the kernel that are themselves protected
by, e.g., locks

 Whether you see it or not, your programs do use locks, cond vars,
semaphores, etc. when they run in kernel mode

 Let’s say we have three processes: H > M > L
 Resource R (e.g., a linked list in which elements are inserted/removed) is

currently in use by process L
 Process L holds a lock called mutex

 Process H requires resource R
 Process H is blocked on a lock(mutex)

 But process M is running, preventing process L from running for a long time
 So process L can never call unlock(mutex) 

 Priority Inversion: Process M runs, and runs, while process H is stuck



Priority Inversion Solution
 Most OSes implement a priority inheritance 

mechanism
 A process that accesses a resource needed by a

higher priority process inherits that process’
priority temporarily

 Complexifies the Kernel code quite a bit
 This solves the example seen in the previous

slides
 Read Section 6.5.4 and the “Priority Inversion and

the Mars Pathfinder” blurb
 The program was real-time, so higher-priority

processes had better run when they need to!
 If priority inheritance hadn’t been implemented in the

kernel of the OS, the pathfinder would have failed



Semaphores

 A semaphore is a synchronization
mechanism that combines locks and
condition variables

 We won’t talk about it in this course
 Take ICS432
 See Section 5.6 in the book if interested



Synchronization Concerns
 Race Condition

 Inconsistent program state leading to error or incorrect
execution

 Deadlock
 No thread can make progress

 Starvation
 Some threads don’t get access to the CPU even though

they should

 Unfairness
 Some threads don’t get access to the CPU enough

compared to other threads

 Livelock (Take 432 or read the book)
 Constant flip-flopping without any progress being made



Synchronization in Solaris

 Solaris provides:
 adaptive mutexes
 condition variables
 semaphores
 reader-writer locks
 turnstiles 

 Adaptive mutexes
 looks at the state of the system and “decides” whether to

spin or to block
 e.g., if the lock is currently being held by a thread that’s

blocked, forget spinning
 No matter what, long critical sections should be protected

by semaphores or cond. variables so that one is certain
that there will be no spinning



Synchronization since Windows XP

 The Kernel uses spin locks for protection within the Kernel
 Or interrupt-disabling on single-processor systems

 It ensures that a (kernel) thread holding a spin lock is
never preempted

 For user-programs, Windows provides dispatcher objects
 mutex locks
 semaphores
 event (a.k.a. condition variables)
 timers (sends a signal() after a lapse of time)

 MemoryBarrier (prevents the CPU from reordering read-
write instructions)

 Same concepts

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684123(v=vs.85).aspx


Synchronization in Linux
 Locking in the Kernel: spin locks and semaphores

 Spin locks protect only short code sections
 On single-core machines, disables kernel preemption

 Which is allowed only if the current thread does not hold
any locks (the kernel counts locks held per thread)

 (Non-spin) Semaphores used for longer sections of code

 Pthreads
 (non spin) mutex locks
 spin locks
 condition variables
 read-write locks
 Semaphores
 Futex (fast userspace mutex) (since 2.6, Dec. 2003)



Conclusion
 Synchronization is an essential topic

 Theory is difficult
 Practice is difficult

 The future may change this unfortunate situation
 “New” “concurrent” languages (Erlang, uC++, Go...)
 New ways to think about concurrent programming
 Help from the compiler
 Help from the hardware: transaction memories

 If you want to know more, take ICS432
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