
ICS332
Operating Systems

Main Memory

Main Memory
 The OS must manage main memory because it manages processes

that share main memory
 Main memory:

 A large array of bytes (words), each with its own address
 The memory unit sees a stream of addresses coming in on the memory bus

 The memory unit is hardware
 Each incoming address is stored in the memory-address register of the

memory unit
 Causing the memory unit to put the content at that address on the

memory bus
 The CPU can only issue addresses that correspond to registers or

main memory
 There are no assembly instructions to directly read/write data to disk

 We’re going to learn how the OS manages memory
 Disclaimer: we’ll describe how things work, then “break them”, then describe

how they really work, then “break them again” and so on until we get to how
things really work (really)

Contiguous Memory Allocations
 Let’s assume what we’ve always assumed so far:

each process is allocated a contiguous zone of
physical memory

Swapping
 Sometimes, not all processes can fit in memory
 Some must be saved to a “backing store”, i.e., the disk
 Moving processes back and forth between main memory and

the disk is called swapping
 When a process is swapped back in, it may be put into the

same physical memory space or not
 Enabled by address binding at execution time

 As we know, the OS maintains a ready queue of processes
 Some of the ready processes reside in memory, some on disk
 Whenever the OS says: “I give the CPU to process X”, then it

calls the dispatcher, who loads X from disk if needed
 And then does the usual register loads, etc.

 Consequence: some context switches can involve the disk

Swapping

Swapping is slow
 Context-switching to a process in memory is fast
 Context-switching to a process on disk is really slow

 Consider a process with 500MB address space
 Consider a disk with 10ms latency and 50MB/sec bandwidth
 The time to load the process is 10010ms

 And the time to store the process is likely higher

 How do we cope with slow swapping?
 We ask programs to tell us exactly how much memory they need

(malloc and free are not there just to make your life difficult)
 The OS may then opt to swap in and out smaller processes

rather than larger processes
 We may use a swap partition (as opposed to a file) so as to

minimize expensive disk seeks (more on this much later)

Swapping and I/O
 Swapping a process to disk may require that the

process be completely idle, especially for I/O
purposes

 If a process is engaged in I/O operations, these
operations could be asynchronously writing data into
the process’ address space

 e.g., DMA
 If we swap it out and replace it by another process,

that other process may see some of its memory
overwritten by delayed I/O operations!

 Two solutions:
 Never swap any process that has pending I/O
 Do all I/O in kernel buffers, and then the kernel can decide

what to do with it

Swapping in OSes
 Swapping is often disabled
 Swapping is done only in “exceptional” circumstances

 e.g., a process has been idle for a long time and memory space
could be used for another process

 e.g., the load on the system is getting too high
 In Windows 3.1, swapping was user-directed!

 The user decides to allow/deny swapping in and out
 If the normal mode of operation of the system requires

frequent swapping, you’re in trouble
 Modern OSes do not always swap whole processes

 Say you have 3GB of available RAM and two 1.6GB processes
 It would seem to make sense to keep one process and 94% of

the other in RAM at all time
 This is called “paging” (see later in these slides)

Smaller Address Spaces

 Swapping is slow, and the more it is
avoided, the better

 So there is a strong motivation to make
address spaces as small as possible
 Intuitively, if one can save RAM space then

one should do it

 Two techniques are used to reduce the
size of the address spaces
 Dynamic Loading
 Dynamic Linking

Dynamic Loading

 One reason for an address space being large is
that the text segment is itself very large
 i.e., many lines of code

 But often large amounts of code are used very
rarely
 e.g., code to deal with errors, code to deal with

rarely used features
 With dynamic loading, the code for a routine is

loaded only when that routine is called
 All dynamically loadable routines are kept on disk

using a relocatable format (i.e., the code can be
put anywhere in RAM when loaded)

Dynamic Loading
 Dynamic loading is the responsibility of the user program

 The OS is not involved, although it can provide convenient
tools to ease dynamic loading

 Example: Dynamic Loading in Java
 Java allows classes to be loaded dynamically
 The ClassLoader class is used to load other classes
 Simple example, for a loaded class named “MyLoadedClass”,

which has a “print” method that takes as input a String
 ClassLoader myClassLoader =

ClassLoader.getSystemClassLoader()
 Class myLoadedClass =

myClassLoader.loadClass(“MyLoadedClass”)
 Object instance = myLoadedClass.newInstance()
 Method method = myLoadedClass.getMethod(“print”, new

Class[] {String.class})
 method.invoke(instance, new Object[] {“input string”})

Dynamic Linking
 The default: static linking

 All libraries and objects are combined into one (huge) binary
program

 Dynamic Linking is similar in concept to dynamic loading,
but here it’s the linking that’s postponed until runtime

 We call such libraries: shared libraries
 When dynamic linking is enabled, the linker just puts a
stub in the binary for each shared-library routine reference

 The stub is code that
 checks whether the routine is loaded in memory
 if not, then loads it in memory
 then replaces itself with a simple call to the routine

 future calls will be “for free”

Dynamic Linking
 So far, this looks a lot like Dynamic Loading

 In fact, better, because more automated
 BUT, all running processes can share the code for the dynamic

library thus saving memory space
 which is why it’s called a shared library (.so, .dll)

 So, for instance, the code for “printf” is only in one place in RAM
 This is also very convenient to update a library without having to

relink all programs
 Just replace the shared library file on disk, an new processes will happily

load the new one
 Provided the API hasn’t changed of course

 Dynamic Linking requires help from the OS
 To break memory isolation and allow shared text segments
 This comes “for free” with virtual memory as we’ll see

Looking at Shared Libraries
 On Linux system the ldd command will print the shared

libraries required by a program
 turns out, no need to use strace after all (Prog. Assignment #1)

 For instance, let’s look at the shared libraries used by /bin/ls,
/bin/date
 The compiler adds stuff in the executable so that ldd can find this

information and display it
 When you run this program, all those libraries are loaded

into memory if not already there
 Turns out, on Linux, you can override functions from loaded

shared libraries by creating yourself a small shared library
 Let’s try this...

 Inspired by the “Overriding System Functions for Fun and Profit” post
at hackerboss.com (by “Ville Laurikari”)

Overriding calls
 Let’s modify what /bin/date does
 As seen in the ldd output, /bin/date uses libc.so.6, the

standard C library
 In fact every program uses this!
 It had better not be replicated in memory for each process!

 By looking at the code of the C library (which is open
source), you can figure out how to write your own
version of a few functions as follows

 Let’s look at our “replacement” code, to print the time
one hour ago
 Based on overriding the localtime function in libc
 man localtime (converts a number of seconds since some

time in the past to a data structure that describes localtime)

Slow by 1 hour

#define _GNU_SOURCE
#include <time.h>
#include <dlfcn.h>
#include <stdio.h>

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)
{
 time_t t = *timep - 60 * 60 * 24;
 return orig_localtime(&t);
}

void
_init(void)
{
 printf("Loading a weird date.\n");
 orig_localtime = dlsym(RTLD_NEXT, "localtime");
}

Access to tons of GNU/Linux
things that are not part of the C
standard (in our case, dynamic
loader functionality)

Slow by 1 hour

#define _GNU_SOURCE
#include <time.h>
#include <dlfcn.h>
#include <stdio.h>

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)
{
 time_t t = *timep - 60 * 60 * 24;
 return orig_localtime(&t);
}

void
_init(void)
{
 printf("Loading a weird date.\n");
 orig_localtime = dlsym(RTLD_NEXT, "localtime");
}

_init() in a shared library
is executed when the
library is loaded

Slow by 1 hour

#define _GNU_SOURCE
#include <time.h>
#include <dlfcn.h>
#include <stdio.h>

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)
{
 time_t t = *timep - 60 * 60 * 24;
 return orig_localtime(&t);
}

void
_init(void)
{
 printf("Loading a weird date.\n");
 orig_localtime = dlsym(RTLD_NEXT, "localtime");
}

Our _init() function first prints
a message

Slow by 1 hour

#define _GNU_SOURCE
#include <time.h>
#include <dlfcn.h>
#include <stdio.h>

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)
{
 time_t t = *timep - 60 * 60 * 24;
 return orig_localtime(&t);
}

void
_init(void)
{
 printf("Loading a weird date.\n");
 orig_localtime = dlsym(RTLD_NEXT, "localtime");
}

Our _init() function then finds
the address of the localtime
function in one of the dynamic
libraries loaded after this one,
i.e, in libc.so.6.
Once the address is found,
then is is stored in function
pointer orig_localtime.
We do this so that we can call
the original localtime function in
our replacement localtime
function

Slow by 1 hour

#define _GNU_SOURCE
#include <time.h>
#include <dlfcn.h>
#include <stdio.h>

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)
{
 time_t t = *timep - 60 * 60 * 24;
 return orig_localtime(&t);
}

void
_init(void)
{
 printf("Loading a weird date.\n");
 orig_localtime = dlsym(RTLD_NEXT, "localtime");
}

Our replacement for the original
localtime function found in
libc.so.6
This function takes a pointer to
an integer-like number of
seconds elapsed since Jan 1st
1970

Slow by 1 hour

#define _GNU_SOURCE
#include <time.h>
#include <dlfcn.h>
#include <stdio.h>

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)
{
 time_t t = *timep - 60 * 60 * 24;
 return orig_localtime(&t);
}

void
_init(void)
{
 printf("Loading a weird date.\n");
 orig_localtime = dlsym(RTLD_NEXT, "localtime");
}

Compute the date 3600
seconds ago by modifying
the number of second
elapsed since the beginning
of the epoch

Slow by 1 hour

#define _GNU_SOURCE
#include <time.h>
#include <dlfcn.h>
#include <stdio.h>

struct tm *(*orig_localtime)(const time_t *timep);

struct tm *localtime(const time_t *timep)
{
 time_t t = *timep - 60 * 60 * 24;
 return orig_localtime(&t);
}

void
_init(void)
{
 printf("Loading a weird date.\n");
 orig_localtime = dlsym(RTLD_NEXT, "localtime");
}

Call the original localtime
function which is now “faked”
into thinking that the number of
seconds elapsed since the
beginning of the epoch is 3600
seconds less than it really is

Let’s try it...

 Compiling it
 gcc -fPIC -DPIC -c weirddate.c

 Creating the shared library
 ld -shared -o weirddate.so weirddate.o -ldl

 Running it
 date
 export LD_PRELOAD=./weirddate.so

 To create an environment variable

 date

Overriding with LD_PRELOAD

 This turns out to be VERY useful
 Let’s say you want to write a way to count

heap space usage for any executable
 Write modified malloc() and free() versions that

call the original malloc() and free() functions
but that record a total count of allocated bytes
and print it

 Tons of other “serious” usages when you
want to add something to an existing library
function, or do something totally different

Onward to RAM management

 For now, let’s consider that each process
consists of a “slab” of memory, without
thinking about dynamic loading/linking

 A process should only access data in its
own address space

 How does the OS/hardware enforce this
memory protection?

Simple Memory Protection

 To provide memory protection, one must
enforce that the range of addresses issued
by a process is limited

 This is done by the OS with help from the
hardware

 The simplest approach: use two registers
 Base Register: first address in the address

space
 Limit Register: length of the address space

Base and Limit Registers

Base and Limit Registers
 When “giving” the CPU to a process, the OS sets the

values for the two registers
 Done by the dispatcher component, during the context switch

 Setting these values is done via privileged instructions
 For obvious reasons

 Then, the hardware uses these values:

<≥

base + limitbase

CPU
address

yes yes

nono

trap to OS
(addressing error) memory

What’s the problem?

 The setup on the previous slide works
 But it would be really convenient for the

programmer/compiler to not have to care about
where the program is in physical memory

 It would be great if I could think of my
addresses as going from 0 to some maximum
 The system should hide from me my actual location

in physical memory
 That way my program can be moved around in

memory and that should all be handled by the OS
not by the programmer

 This is called relocatable code

Logical vs. Physical Addresses
 Let’s call an address that’s put in the memory unit’s

memory-address register a physical address
 Let’s call an address generated by the CPU a logical

address
 A program references a logical address space, which

corresponds to a physical address space in the memory
 logical address = virtual address

 And we use both terms interchangeably
 Logical addresses are between 0 and some maximum
 There is a translation from logical to physical addresses

 Done by the memory-management unit (MMU), a piece of
hardware

 This is very simple to achieve...

Simple Logical-to-Physical

 One option: a relocation register added to all logical address
 Equivalent to the “base register” from a few slides ago

 The program works with logical addresses
 In the range 0 to max

 The program never “sees” physical addresses
 In the range R to (R+max)

 We just need to enforce that the logical addresses are between 0 and max...

Relocation and Limit Registers
 Relocation register: smallest valid physical @’s
 Limit register: range of valid logical @’s (the “max”)

 Loaded by the dispatcher during a context-switch
 Used to provide both protection and relocation
 Moving a process: memcopy it and update the relocation reg.

We now have the mechanism...

 We have the mechanism to allocate each
process a “slab” of RAM, and to have it
issue addresses that fall in that slab
 Or rather, to detect when it issues addresses

outside of the slab and terminate it

 Question: What’s the policy?
 How do I decide where to place each slab in

RAM?

Memory Partitioning
 Where do we put processes in memory?
 The Kernel can keep a list of available memory regions, or holes

 The list is updated after each process arrival and departure

 When a process enters the system, it’s put on an input queue
 The “I am waiting for memory” queue

 Given the list of holes and the input queue, the Kernel must make
decisions

 Pick a process from the input queue
 Pick in which hole the process is placed

 This is the dynamic storage allocation problem
 Goal: allow as many processes in the system as possible
 Unfortunately it is a theoretically difficult problem

 And it’s an “on-line” problem (i.e., we don’t know the future)

Memory Partitioning

Kernel+OS

list of holes

input queue Ø

Memory Partitioning

OS

list of holes

input queue P1

Memory Partitioning

OS

list of holes

input queue

P1

Ø

Memory Partitioning

OS

list of holes

input queue

P1

P2

P3

Memory Partitioning

OS

list of holes

input queue

P1

P2

P3

P4

Memory Partitioning

OS

list of holes

input queue

P1

P3

P4

P2

Memory Partitioning

OS

list of holes

input queue

P1

P3

P2

P6

P5

P4

Memory Partitioning

OS

list of holes

input queue

P1

P3

P6

P5

P4

Memory Partitioning

P3

OS

list of holes

input queue

P1

P6

P5

P4

Memory Allocation Algorithm

 Picking the next process:
 Option #1: First-Come-First-Serve (FCFS)

 Fast to compute, but may delay small processes
 Option #2: Allow smaller processes to jump ahead

 Slower to compute, favors small processes
 This is what the example showed, and thus P4 was

denied access longer than it would have with Option #1
 Option #3: Something more clever

 Limit the “jumping ahead”
 e.g., only 3 processes following process X may jump ahead of it

 Do some “look-ahead”
 Wait for >1 new processes before making a (more informed)

decision
 Picking the right amount of time to wait is tricky

 ...

Memory Allocation Algorithm

 Picking an appropriate hole for a process
 Three common options

 First Fit: pick the first hole that’s big enough
 fast and easy

 Best Fit: pick the smallest hole that’s big enough
 slower as it requires sorting

 Worst Fit: pick the biggest hole
 slower as it requires sorting

 Once we found the hole, do we put the
process at the top or the bottom of it?
 The middle’s likely not a great idea in general

Memory Partitioning
 So what’s best?

 FCFS + First Fit + bottom?
 Jump Ahead + Worst Fit + top?

 Unfortunately, nothing is best
 These are heuristics to solve an computationally difficult problem
 We can always come up with a scenario for which one

combination is better than all the others
 Even with FCFS + Worst Fit + middle!

 The only thing we can do is run tons of synthetic scenarios,
compute averages, and go with what seems best on average

 Hoping that our scenarios are representative of the real-world
 In this way, we will likely see that “FCFS + Worst Fit + middle” is

likely not great, but we cannot prove anything theoretically
 Or at least nothing useful

 Just like what we saw for scheduling

Fragmentation
 Goal: to hold as many processes as possible in memory
 This is very related with minimizing memory fragmentation

 Fragmentation = number of holes
 For instance, First Fit typically wastes 1/3 of the memory due

to fragmentation
 the “50% rule” (for 2X useful memory, 50% of it is wasted)

 Internal fragmentation
 We don’t want to keep track of tiny holes

 Keeping track of a 4-byte hole requires more than 4-bytes of
memory in some data structure (e.g., two pointers and an int)!

 So we allocate memory in multiples of some block size
 A process many not use all its allocated memory

 By at most the block size - 1 byte
 This fragmentation is “invisible” when looking at the list of holes

Fragmentation

block

Fragmentation

process A (uses 6.5 blocks)

process B (uses 8.10 blocks)

Fragmentation
 External fragmentation = 2

 We have 2 holes
 one of 3 blocks
 one of 1 block

 Internal fragmentation =
 0.5 + 0.9 = 1.4 blocks

 Tiny blocks: little internal
fragmentation, more stuff to keep
track of

 Large blocks: large internal
fragmentation, less stuff to keep
track of

Fragmentation

 One way to deal with fragmentation is compaction
 What you do when you defrag your hard drive

 This amounts to shuffling memory content
 Do a memory copy
 Update the relocation register of the process you

moved
 Only possible with dynamic address binding

 Problems:
 It’s slow (memory copies are sloooooow)
 Problems if processes are in the middle of doing I/O

problems (e.g., DMA), just like with swapping

So, where are we?
 Fragmentation is bad

 e.g., a process of size X may be stuck
even though there are hundreds of
holes of size X/2

 Shuffling processes around to defrag the
memory is expensive and comes with its
own problems

 So we cannot reduce fragmentation
 Seems that we’re in a bind
 Contiguous memory allocation is just too

difficult of a problem to solve well

 We have to do something radically
different...

P3

OS

P1

P6

P5
P4

	Main Memory (I)
	Main Memory
	Contiguous Memory Allocations
	Swapping
	Swapping
	Swapping is slow
	Swapping and I/O
	Swapping in OSes
	Smaller Address Spaces
	Dynamic Loading
	Dynamic Loading
	Dynamic Linking
	Dynamic Linking
	Looking at Shared Libraries
	Overriding calls
	Slow by 1 hour
	Slow by 1 hour
	Slow by 1 hour
	Slow by 1 hour
	Slow by 1 hour
	Slow by 1 hour
	Slow by 1 hour
	Let’s try it...
	Overriding with LD_PRELOAD
	Onward to RAM management
	Simple Memory Protection
	Base and Limit Registers
	Base and Limit Registers
	What’s the problem?
	Logical vs. Physical Addresses
	Simple Logical-to-Physical
	Relocation and Limit Registers
	We now have the mechanism...
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Partitioning
	Memory Allocation Algorithm
	Memory Allocation Algorithm
	Memory Partitioning
	Fragmentation
	Fragmentation
	Fragmentation
	Fragmentation
	Fragmentation
	So, where are we?

