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Virtual Memory
 Allow a process to execute while not completely in

memory
 Part of the address space is kept on disk

 So far, we have assumed that the full address space
must be in memory for a process to execute

 Although dynamic loading broke that assumption a little bit

 Requiring the full process in memory is overkill
 Programs have code that’s not used often
 Programs tend to declare more than they use
 Not everything is needed at the same time!

 Perhaps the process’ address space is just too big
 But we want to conserve memory space anyway



Virtual Memory

 Advantages of partially in-memory processes
 Easy of programming:

 Users can write programs assuming a very large virtual
address space

 Better performance:
 More processes in the ready queue at the same time

 Better CPU utilization: good for the system
 Lower wait times: good for users

 Less I/O is needed to swap processes in/out when main
memory is full

 Programs can be started faster
 Only a few pages are needed initially

 Consider a program that fails right away: it would be really
wasteful to load it entirely, then launch and abort right away



Demand Paging
 Loading the whole process before starting it increases response time
 Demand paging: load a page only when it is needed (i.e., referenced)

 Some pages may never be loaded!

 This is typically called a lazy scheme (as opposed to an eager scheme):

page out

page in



Valid/Invalid Bit
 For each process, the OS needs to keep track of

which pages are in memory and which are on disk
 This is done with a valid bit in page table entries

 a page is marked as valid if it is legal and in
memory

 a page is marked as invalid if it is illegal or on disk
 Initially the bit is set to invalid for all entries
 If the pager guesses right on which pages to bring

in, the process will only reference pages with the
bit set to valid

 During address translation, if the bit is invalid a
trap is generated: a page fault



Valid Bit Example

 Accessing
logical page 3
( content D)
would lead to a
page fault

 Accessing page
2 (content C)
wouldn’t



Page Fault
 Upon receiving a page fault the kernel: 

 Checks whether the page is illegal or just on disk
 The kernel keeps track of where a page is
 If it’s illegal, then likely abort the process

 Finds a free memory frame
 Recall that there is a free frame list in the Kernel

 Schedules a disk access to load the page into the frame
 And put the process on the blocked queue of the paging

manager, so that another process can run in the meantime
 Once the disk access completes, updates the process’

page table with the new logical-physical mapping
 Updates the valid bit of that entry
 Restarts the process, restarting the instruction that was

interrupted by the page fault in the first place



Page Fault



Restarting a Process

 Restarting a process that has page faulted can be easy
 If the fault was on the instruction fetch, then just restart the fetch

 Just decrement the Program Counter register by one
 If the fault was on an operand fetch, then just restart the

instruction in the same way
 Operand will be fetched again, but oh well

 If the fault was on result store, same idea

 Problem: instructions that modify multiple memory locations
 e.g., an instruction that increments [eax] and decrements [ebx]

and that page faults on the [ebx] access
 Then we have to be careful not to increment [eax] twice

 Luckily we have come to love load/store architectures
 Only two instructions access memory: load and store
 Explicit in the ISA or in (hidden) microinstructions



Virtual Memory Performance
 Let p be the probability that a memory access causes a page fault
 Let ma be the memory access time if no fault occurs

 Say 200 ns  (a bit pessimistic)

 Let penalty be the time to resolve a page fault
 Then we have:

 from book: effective access time = (1-p)*ma + p * penalty
 better as effective access time = ma + p * penalty

 How bad is the penalty?
 The bulk of the penalty is the disk access time

 The book makes a case for 8ms
 Could be better due to use of swap partitions

 With these numbers: eff. access time ~ 200 + 8,000,000p
 To get performance degradation of 10%, we need p=0.0000025!!!
 Message: non-very low page fault rate = death 



Fork() and Exec()

 We’ve seen that fork() does a copy of the
address space of the parent process to
create an identical child process

 Most of the time we use exec() right after
fork() to run another program
 Example:  if (!fork()) { exec(“/bin/ls”,...); }

 Why is this a horrible waste? 



Fork() and Exec()

 We’ve seen that fork() does a copy of the
address space of the parent process to
create an identical child process

 Most of the time we use exec() right after
fork() to run another program
 Example:  if (!fork()) { exec(“/bin/ls”,...); }

 Why is this a horrible waste? 

 Why copy an address space to immediately
overwrite it with another?? (that of “/bin/ls”)



Copy-on-Write
 Process creation, i.e., fork(), can be sped up by page

sharing
 Minimize the number of new pages for the new process

 Since fork() is often followed by exec(), no need for full
address space copy

 Copy-on-write
 Parent and Child share all pages
 All writable pages are marked as “copy-on-write”

 e.g., the code isn’t marked as copy-on-write
 If either process modifies a copy-on-write page, then a

copy is made
 Used by WinXP, Linux, Solaris, etc.

 Linux vfork(): parent is suspended
 Used right before exec()



Copy-on-Write

One process writes
to page C



Page Replacement
 Virtual Memory increases multi-programming and

provides the illusion of large address spaces
 But it may run out of memory:

 A page fault occurs
 The free frame list is empty

 There is a need for page replacement
 Evict a page from a frame (victim frame)

 Possibly write it back to disk
 Put the newly needed page in its place

 Page replacement may thus require two page
transfers

 When your main memory is full, and all processes are trying
to access memory, things just get slow



Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 T

6 R
Memory
frames

Page table of 
process #2

Page table of 
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2 T

3 U Disk

E

C

6 v

1 v

5 v

4 v



Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 T

6 R
Memory
frames

Page table of 
process #2

Page table of 
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2 T

3 U Disk

E

C

6 v

1 v

5 v

4 v

Process #1 says “load E”,
and generates a page fault



Page Replacement
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Page Replacement
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Page Replacement
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Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5

6 R
Memory
frames

Page table of 
process #2

Page table of 
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2

3 U Disk

E

C

6 v

1 v

i

4 v

The free-frame list in the
kernel is now non-empty

T

5Free frames:



Page Replacement
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Page Replacement
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Page Replacement
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All pages are kept on disk

 In the previous pictures, it seems that pages are
either in memory or on disk

 But pages are always on disk
 If the system crashes, we don’t want to lose data and

text segments of our executable!

 So, the disk picture should have always been:

C

T

AB

D

E

R

S

U



Dirty Bit
 When writing an evicted page back to disk, it is

possible that no change was ever made to that
page

 If it’s a read-only page, e.g., code or input
 If it’s simply not been written to because the process that

owns that page hasn’t gotten around to writing to it yet

 So when evicting a victim page, if it hasn’t been
modified, no need to write it back to disk!

 Each frame (or page) is accompanied with a dirty
bit

 If the bit is set, the page in the frame has been modified
and must be saved back to disk when evicted



Policies
 We now have all the mechanisms, but we need to define the

policies:
 Page replacement algorithm
 Frame allocation algorithm

 Goal: minimize the number of page faults
 Note the contrast

 Scheduling the CPU
 The CPU is so fast that we have to make decisions very quickly
 We use simple algorithms that do OK, hopefully

 Scheduling memory frames
 The disk is so slow, that it’s ok to spend some time making a

decision
 Saving only a very small fraction of the page faults leads to huge

improvements
 We can afford to use more sophisticated algorithms
 But as usual, we work with imperfect information



Evaluating Page Replacement Algs

 Like for CPU scheduling, it’s hard to tell which
algorithm is good

 So we just try a bunch of cases
 A case is defined as:

 Some number of memory frames
 A string of page references

 Either synthetic
 Or collected on a real system

 Output: count of the page faults
 Algorithms in the book are presented for 3

memory frames and the following string:
 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1



FIFO Page Replacement

 Simplest algorithm: always evict the oldest page
 Implemented via a FIFO queue

15 page faults



Optimal Page Replacement
 Assuming we know the future, the best choice: evict the

page that will not come in use for the longest time
 Not possible to implement in practice
 But good to evaluate other algorithms in absolute terms

9 page faults



LRU Page Replacement

 Least Recently Used
 The problem with FIFO is that an old page may be

used all the time
 So it’s likely better to keep track of when a page

was last used

12 page faults



LRU Implementation
 LRU is considered a “good” algorithm
 Question: How to keep track of last time of use for each

page?
 Answer #1: Counters

 Augment each page table entry with a “time of use” field
 Update that field for each memory access
 Upon eviction search for the minimum field across the entries
 High-overhead

 Answer #2: Stack
 A page is moved to the top after each use
 Requires a bunch of pointer shuffling
 But no search for the victim (always at the bottom of the stack)

 In both cases, hardware help is needed to achieve speed



Help from the Hardware

 If the hardware doesn’t provide any help,
forget doing anything other than FIFO

 And the hardware doesn’t typically provide
enough help to implement full-fledge LRU

 Most hardware provides a reference bit
 An additional bit to each page table entry

 And therefore to the TLB
 Set to 1 by the hardware when a page is

accessed
 The reference bit can be used to make

some (somewhat) enlightened decisions



Approximate LRU
 Keep a limited history of the reference bit for each page

 e.g., an extra N bits attached to every entry

 Update this history periodically (e.g., every 100ms) by right-
shifting the reference bit into the bits of the N-bit history

 The page with the smallest history is the approximate least
recently used page

 Example:
 Page #4:  01101110
 Page #12: 00001101 (LRU)
 Page #13: 10100000

 Many pages can have the same history
 Especially if N is small

 So this scheme can be used in combination with a FIFO



Second Chance

 FIFO that relies on the reference bit for history
in addition to page age

 When considering the oldest page for eviction
 If the reference bit is set to 0, evict the page
 If the reference bit is set to 1, set it to 0, and reset

the page’s arrival time (i.e., age = 0)

 Result: A page that keeps getting referenced
is never evicted

 Implementation technique: a circular queue



Second Chance: Figure from Book



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

initially no frame has been referenced



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

After 120ms, 3 frames have been referenced

But no page fault has occurred



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

At time t=150ms we need to pick a victim

We slide the pointer to the right, zeroing out

reference bits along the way until a zero is found

t = 150ms           page fault!



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 0 1 0 0 0 0

The victim’s evicted and a new page arrives (and is referenced)

 The pointer advances



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

By time 320ms, no page fault has occurred and

a few more frames have been references



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: if we now have 2 page faults in a row,  which page will
be evicted?



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: if we now have 2 page faults in a row, which frames
are have a page fault now, which page will be evicted?



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: What will the circular look like once the two page
faults are resolved are where is the pointer?



Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 0 1 1 0 0 1 0 0

Question: What will the circular look like once the two page
faults are resolved?



Performance Optimizations
 Keeping a pool of free frames

 Load the new page into a free frame before waiting for
having evicted the victim page

 Remembering ghosts of evictions past
 Assume a pool of free frames is kept
 These free framed are marked free, not wiped out
 So if an evicted page is needed again, it may already be

in a frame marked free and can be retrieved with zero
cost

 Opportunistic un-dirtying
 Whenever the disk’s idle, pick a dirty page, write it out to

disk, and clear its dirty bit
 We like clean pages because we can evict them “for free”



Frame Allocation Algorithms
 Question: how many frames to give to which processes?

 e.g., we have 47 free frames in total, we have 2 new processes, how
many do we give to each?

 Minimum number of frames (to execute any instruction)
 Depends on the architecture
 If an instruction is longer than a word, then it may straddle two frames
 If an instruction allows both memory access and memory indirection,

then we need at least three frames
 One for the instruction
 One for the address access
 One for the data access

 If the degree of indirection is unbounded, then in the worst case one
needs the whole address space in frames

 e.g.,  mov eax, ((((((((((ebx))))))))))
 Unlikely in a real-world ISA

 For a load/store architecture with word-size instructions: 2 frames
 Maximum number of frames: size of physical memory



Frame Allocation

 Equal allocation
 m frames, n processes
 each process gets m/n frames

 Proportional allocation
 if si is the memory size of process pi

 if S is the sum of all process sizes
 each process gets (si/S)*m frames

 Priority allocation
 bias the above to include process priority



NUMA Systems

 Non Uniform Memory Access
 A multi-CPU system can have multiple boards,

each with a CPU and memory
 A CPU can access the memory on its board

faster than that on other boards

 The paging system for a NUMA machine
should try to keep pages close to
processors

 Things at that point get pretty complicated
 Especially throwing in threads



Global/Local Page Replacement
 Local replacement: victim among the page-faulting

process’ pages
 Number of frames per process is kept constant

 Global replacement: Any victim can be selected
 Could be good for high-priority processes
 But then the page-fault performance of a process depends on

other processes and may change from one run to the next

 Global replacement is typically used because it
increases system throughput

 Let processes grab frames when they need them where they
can find them as opposed to everybody in their own space

 Our example a few slides ago assumed global
replacement



Thrashing
 Let’s consider a system with a global page replacement algorithm
 A process needs more frames and increases its page-fault rate 
 It takes frames away from other processes
 These processes now do more page-faults
 As a result the ready queue empties out
 CPU utilization decreases as processes are waiting for the disk
 The CPU scheduler starts a new process to increase utilization
 This process needs frames and joins the “waiting for pages” group
 Another process gets brought in to increase utilization
 No work gets done: everybody’s waiting for pages
 This is called thrashing

 Paradox: to increase CPU utilization we must reduce the
multiprogramming level



Thrashing



Locality
 The way to prevent

thrashing is to provide
each process with the
pages it needs

 easy, right?

 Problem: how do we
know how many pages
a process needs?

 Locality: a process
tends to access pages
in the same area of
the address space for
a while before moving
to another area
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Locality
 The way to prevent

thrashing is to provide
each process with the
pages it needs

 easy, right?

 Problem: how do we
know how many pages
a process needs?

 Locality: a process
tends to access pages
in the same area of
the address space for
a while before moving
to another area



Working Set Strategy

 We can keep track of all the pages
referenced by each process during a
window of the last Δ memory references

 We call this the working set of the process
 The system keeps track of D, the sum of

the sizes of the working set of running
processes

 The system swaps out an entire process
when D is larger than the number of
available memory frames

 As a result, no thrashing happens



Working Set



Working Set

Loading the working set
(a bunch of pfs)



Working Set

Working with the working set
(rare pfs)



Page-Fault Frequency Strategy

 A much simpler approach than working set
estimation is to simply monitor the page fault rate

 We set upper and lower bounds on the page fault
rate of each process

 If the rate is above the upper bound, we give the
process another frame

 If the rate is below the lower bound, we take a page
away from the process

 If no new frame can be given to a process, we
simply suspend it and swap it out entirely

 Just like with the working set strategy



Memory-Mapped Files
 I/O is known to be very expensive

 Each access to the file requires disk access
 Disk seek and access times are very high

 With virtual memory, on-disk address space pages are brought
into RAM and written to disk later

 Why not do the same for files?
 Memory mapping: mapping a disk block to a memory frame

 Initial access to the file generates a page fault
 Subsequent accesses are in memory

 read() and write() are “tricked” into going to memory rather than the disk
 The on-disk file may be updated later, upon closing, etc.

 Memory mapping is via special system calls or by default
 e.g., Solaris memory maps all files (in user or kernel space)

 Multiple processes may map the same file concurrently



Memory Mapping and Sharing



Memory Mapping and Shared Memory
 Memory mapping can be used to implement shared memory

 In Linux, there are separate mechanisms for memory
mapping and shared memory

 mmap() vs. shmget(), etc.
 In Windows shared memory is implemented with memory

mapping as in the diagram above



Memory-Mapped I/O

 To access I/O devices, one can set aside
ranges of memory addresses

 Loads/Stores to these addresses cause
interaction with the device

 Convenient because then all memory-
mapped I/O devices look similar



Conclusion

 Virtual Memory:
 A process can be partially in memory

 Two key issues:
 Page replacement
 Frame allocation

 The thrashing problem and its solutions
 Memory-mapping for files or I/O
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