
Operating Systems
ICS332

Operating Systems

Virtual Memory

Virtual Memory
 Allow a process to execute while not completely in

memory
 Part of the address space is kept on disk

 So far, we have assumed that the full address space
must be in memory for a process to execute

 Although dynamic loading broke that assumption a little bit

 Requiring the full process in memory is overkill
 Programs have code that’s not used often
 Programs tend to declare more than they use
 Not everything is needed at the same time!

 Perhaps the process’ address space is just too big
 But we want to conserve memory space anyway

Virtual Memory

 Advantages of partially in-memory processes
 Easy of programming:

 Users can write programs assuming a very large virtual
address space

 Better performance:
 More processes in the ready queue at the same time

 Better CPU utilization: good for the system
 Lower wait times: good for users

 Less I/O is needed to swap processes in/out when main
memory is full

 Programs can be started faster
 Only a few pages are needed initially

 Consider a program that fails right away: it would be really
wasteful to load it entirely, then launch and abort right away

Demand Paging
 Loading the whole process before starting it increases response time
 Demand paging: load a page only when it is needed (i.e., referenced)

 Some pages may never be loaded!

 This is typically called a lazy scheme (as opposed to an eager scheme):

page out

page in

Valid/Invalid Bit
 For each process, the OS needs to keep track of

which pages are in memory and which are on disk
 This is done with a valid bit in page table entries

 a page is marked as valid if it is legal and in
memory

 a page is marked as invalid if it is illegal or on disk
 Initially the bit is set to invalid for all entries
 If the pager guesses right on which pages to bring

in, the process will only reference pages with the
bit set to valid

 During address translation, if the bit is invalid a
trap is generated: a page fault

Valid Bit Example

 Accessing
logical page 3
(content D)
would lead to a
page fault

 Accessing page
2 (content C)
wouldn’t

Page Fault
 Upon receiving a page fault the kernel:

 Checks whether the page is illegal or just on disk
 The kernel keeps track of where a page is
 If it’s illegal, then likely abort the process

 Finds a free memory frame
 Recall that there is a free frame list in the Kernel

 Schedules a disk access to load the page into the frame
 And put the process on the blocked queue of the paging

manager, so that another process can run in the meantime
 Once the disk access completes, updates the process’

page table with the new logical-physical mapping
 Updates the valid bit of that entry
 Restarts the process, restarting the instruction that was

interrupted by the page fault in the first place

Page Fault

Restarting a Process

 Restarting a process that has page faulted can be easy
 If the fault was on the instruction fetch, then just restart the fetch

 Just decrement the Program Counter register by one
 If the fault was on an operand fetch, then just restart the

instruction in the same way
 Operand will be fetched again, but oh well

 If the fault was on result store, same idea

 Problem: instructions that modify multiple memory locations
 e.g., an instruction that increments [eax] and decrements [ebx]

and that page faults on the [ebx] access
 Then we have to be careful not to increment [eax] twice

 Luckily we have come to love load/store architectures
 Only two instructions access memory: load and store
 Explicit in the ISA or in (hidden) microinstructions

Virtual Memory Performance
 Let p be the probability that a memory access causes a page fault
 Let ma be the memory access time if no fault occurs

 Say 200 ns (a bit pessimistic)

 Let penalty be the time to resolve a page fault
 Then we have:

 from book: effective access time = (1-p)*ma + p * penalty
 better as effective access time = ma + p * penalty

 How bad is the penalty?
 The bulk of the penalty is the disk access time

 The book makes a case for 8ms
 Could be better due to use of swap partitions

 With these numbers: eff. access time ~ 200 + 8,000,000p
 To get performance degradation of 10%, we need p=0.0000025!!!
 Message: non-very low page fault rate = death

Fork() and Exec()

 We’ve seen that fork() does a copy of the
address space of the parent process to
create an identical child process

 Most of the time we use exec() right after
fork() to run another program
 Example: if (!fork()) { exec(“/bin/ls”,...); }

 Why is this a horrible waste?

Fork() and Exec()

 We’ve seen that fork() does a copy of the
address space of the parent process to
create an identical child process

 Most of the time we use exec() right after
fork() to run another program
 Example: if (!fork()) { exec(“/bin/ls”,...); }

 Why is this a horrible waste?

 Why copy an address space to immediately
overwrite it with another?? (that of “/bin/ls”)

Copy-on-Write
 Process creation, i.e., fork(), can be sped up by page

sharing
 Minimize the number of new pages for the new process

 Since fork() is often followed by exec(), no need for full
address space copy

 Copy-on-write
 Parent and Child share all pages
 All writable pages are marked as “copy-on-write”

 e.g., the code isn’t marked as copy-on-write
 If either process modifies a copy-on-write page, then a

copy is made
 Used by WinXP, Linux, Solaris, etc.

 Linux vfork(): parent is suspended
 Used right before exec()

Copy-on-Write

One process writes
to page C

Page Replacement
 Virtual Memory increases multi-programming and

provides the illusion of large address spaces
 But it may run out of memory:

 A page fault occurs
 The free frame list is empty

 There is a need for page replacement
 Evict a page from a frame (victim frame)

 Possibly write it back to disk
 Put the newly needed page in its place

 Page replacement may thus require two page
transfers

 When your main memory is full, and all processes are trying
to access memory, things just get slow

Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 T

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2 T

3 U Disk

E

C

6 v

1 v

5 v

4 v

Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 T

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2 T

3 U Disk

E

C

6 v

1 v

5 v

4 v

Process #1 says “load E”,
and generates a page fault

Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 T

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2 T

3 U Disk

E

C

6 v

1 v

5 v

4 v

Kernel select a victim frame
 (in this case a frame from Process #2)

Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 T

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2 T

3 U Disk

E

C

6 v

1 v

5 v

4 v

The victim is saved to disk

T

Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 T

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2 T

3 U Disk

E

C

6 v

1 v

i

4 v

Process #2’s page table
is updated

T

Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2

3 U Disk

E

C

6 v

1 v

i

4 v

The free-frame list in the
kernel is now non-empty

T

5Free frames:

Page Replacement

0 v

3 v

i

2 v

i

0 A

1 S

2 D

3 B

4 U

5 E

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2

3 U Disk

C

6 v

1 v

i

4 v

Load page E in memory

T

Free frames:

Page Replacement

0 v

3 v

i

2 v

5 v

0 A

1 S

2 D

3 B

4 U

5 E

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4

0 R

1 S

2

3 U Disk

C

6 v

1 v

i

4 v

Update Process #1’s
page table

T

Free frames:

Page Replacement

0 v

3 v

i

2 v

5 v

0 A

1 S

2 D

3 B

4 U

5 E

6 R
Memory
frames

Page table of
process #2

Page table of
process #1

Address space of
process #2

Address space of
process #1

0 A

1 B

2

3 D

4 E

0 R

1 S

2

3 U Disk

C

6 v

1 v

i

4 v

Everything’s fine....
until the next page fault

T

Free frames:

All pages are kept on disk

 In the previous pictures, it seems that pages are
either in memory or on disk

 But pages are always on disk
 If the system crashes, we don’t want to lose data and

text segments of our executable!

 So, the disk picture should have always been:

C

T

AB

D

E

R

S

U

Dirty Bit
 When writing an evicted page back to disk, it is

possible that no change was ever made to that
page

 If it’s a read-only page, e.g., code or input
 If it’s simply not been written to because the process that

owns that page hasn’t gotten around to writing to it yet

 So when evicting a victim page, if it hasn’t been
modified, no need to write it back to disk!

 Each frame (or page) is accompanied with a dirty
bit

 If the bit is set, the page in the frame has been modified
and must be saved back to disk when evicted

Policies
 We now have all the mechanisms, but we need to define the

policies:
 Page replacement algorithm
 Frame allocation algorithm

 Goal: minimize the number of page faults
 Note the contrast

 Scheduling the CPU
 The CPU is so fast that we have to make decisions very quickly
 We use simple algorithms that do OK, hopefully

 Scheduling memory frames
 The disk is so slow, that it’s ok to spend some time making a

decision
 Saving only a very small fraction of the page faults leads to huge

improvements
 We can afford to use more sophisticated algorithms
 But as usual, we work with imperfect information

Evaluating Page Replacement Algs

 Like for CPU scheduling, it’s hard to tell which
algorithm is good

 So we just try a bunch of cases
 A case is defined as:

 Some number of memory frames
 A string of page references

 Either synthetic
 Or collected on a real system

 Output: count of the page faults
 Algorithms in the book are presented for 3

memory frames and the following string:
 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

FIFO Page Replacement

 Simplest algorithm: always evict the oldest page
 Implemented via a FIFO queue

15 page faults

Optimal Page Replacement
 Assuming we know the future, the best choice: evict the

page that will not come in use for the longest time
 Not possible to implement in practice
 But good to evaluate other algorithms in absolute terms

9 page faults

LRU Page Replacement

 Least Recently Used
 The problem with FIFO is that an old page may be

used all the time
 So it’s likely better to keep track of when a page

was last used

12 page faults

LRU Implementation
 LRU is considered a “good” algorithm
 Question: How to keep track of last time of use for each

page?
 Answer #1: Counters

 Augment each page table entry with a “time of use” field
 Update that field for each memory access
 Upon eviction search for the minimum field across the entries
 High-overhead

 Answer #2: Stack
 A page is moved to the top after each use
 Requires a bunch of pointer shuffling
 But no search for the victim (always at the bottom of the stack)

 In both cases, hardware help is needed to achieve speed

Help from the Hardware

 If the hardware doesn’t provide any help,
forget doing anything other than FIFO

 And the hardware doesn’t typically provide
enough help to implement full-fledge LRU

 Most hardware provides a reference bit
 An additional bit to each page table entry

 And therefore to the TLB
 Set to 1 by the hardware when a page is

accessed
 The reference bit can be used to make

some (somewhat) enlightened decisions

Approximate LRU
 Keep a limited history of the reference bit for each page

 e.g., an extra N bits attached to every entry

 Update this history periodically (e.g., every 100ms) by right-
shifting the reference bit into the bits of the N-bit history

 The page with the smallest history is the approximate least
recently used page

 Example:
 Page #4: 01101110
 Page #12: 00001101 (LRU)
 Page #13: 10100000

 Many pages can have the same history
 Especially if N is small

 So this scheme can be used in combination with a FIFO

Second Chance

 FIFO that relies on the reference bit for history
in addition to page age

 When considering the oldest page for eviction
 If the reference bit is set to 0, evict the page
 If the reference bit is set to 1, set it to 0, and reset

the page’s arrival time (i.e., age = 0)

 Result: A page that keeps getting referenced
is never evicted

 Implementation technique: a circular queue

Second Chance: Figure from Book

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

initially no frame has been referenced

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

After 120ms, 3 frames have been referenced

But no page fault has occurred

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

At time t=150ms we need to pick a victim

We slide the pointer to the right, zeroing out

reference bits along the way until a zero is found

t = 150ms page fault!

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 0 1 0 0 0 0

The victim’s evicted and a new page arrives (and is referenced)

 The pointer advances

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

By time 320ms, no page fault has occurred and

a few more frames have been references

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: if we now have 2 page faults in a row, which page will
be evicted?

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: if we now have 2 page faults in a row, which frames
are have a page fault now, which page will be evicted?

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 1 0 1 1 1 0 1 1

Question: What will the circular look like once the two page
faults are resolved are where is the pointer?

Second Chance Example

t = 0ms 0

 Example for 8 frames, assuming all frames are
always occupied by some page

0 0 0 0 0 0 0

t = 120ms 1 1 0 1 0 0 0 0

t = 150ms 0 0 1 1 0 0 0 0

t = 320ms 0 1 1 0 0 1 0 0

Question: What will the circular look like once the two page
faults are resolved?

Performance Optimizations
 Keeping a pool of free frames

 Load the new page into a free frame before waiting for
having evicted the victim page

 Remembering ghosts of evictions past
 Assume a pool of free frames is kept
 These free framed are marked free, not wiped out
 So if an evicted page is needed again, it may already be

in a frame marked free and can be retrieved with zero
cost

 Opportunistic un-dirtying
 Whenever the disk’s idle, pick a dirty page, write it out to

disk, and clear its dirty bit
 We like clean pages because we can evict them “for free”

Frame Allocation Algorithms
 Question: how many frames to give to which processes?

 e.g., we have 47 free frames in total, we have 2 new processes, how
many do we give to each?

 Minimum number of frames (to execute any instruction)
 Depends on the architecture
 If an instruction is longer than a word, then it may straddle two frames
 If an instruction allows both memory access and memory indirection,

then we need at least three frames
 One for the instruction
 One for the address access
 One for the data access

 If the degree of indirection is unbounded, then in the worst case one
needs the whole address space in frames

 e.g., mov eax, ((((((((((ebx))))))))))
 Unlikely in a real-world ISA

 For a load/store architecture with word-size instructions: 2 frames
 Maximum number of frames: size of physical memory

Frame Allocation

 Equal allocation
 m frames, n processes
 each process gets m/n frames

 Proportional allocation
 if si is the memory size of process pi

 if S is the sum of all process sizes
 each process gets (si/S)*m frames

 Priority allocation
 bias the above to include process priority

NUMA Systems

 Non Uniform Memory Access
 A multi-CPU system can have multiple boards,

each with a CPU and memory
 A CPU can access the memory on its board

faster than that on other boards

 The paging system for a NUMA machine
should try to keep pages close to
processors

 Things at that point get pretty complicated
 Especially throwing in threads

Global/Local Page Replacement
 Local replacement: victim among the page-faulting

process’ pages
 Number of frames per process is kept constant

 Global replacement: Any victim can be selected
 Could be good for high-priority processes
 But then the page-fault performance of a process depends on

other processes and may change from one run to the next

 Global replacement is typically used because it
increases system throughput

 Let processes grab frames when they need them where they
can find them as opposed to everybody in their own space

 Our example a few slides ago assumed global
replacement

Thrashing
 Let’s consider a system with a global page replacement algorithm
 A process needs more frames and increases its page-fault rate
 It takes frames away from other processes
 These processes now do more page-faults
 As a result the ready queue empties out
 CPU utilization decreases as processes are waiting for the disk
 The CPU scheduler starts a new process to increase utilization
 This process needs frames and joins the “waiting for pages” group
 Another process gets brought in to increase utilization
 No work gets done: everybody’s waiting for pages
 This is called thrashing

 Paradox: to increase CPU utilization we must reduce the
multiprogramming level

Thrashing

Locality
 The way to prevent

thrashing is to provide
each process with the
pages it needs

 easy, right?

 Problem: how do we
know how many pages
a process needs?

 Locality: a process
tends to access pages
in the same area of
the address space for
a while before moving
to another area

Locality
 The way to prevent

thrashing is to provide
each process with the
pages it needs

 easy, right?

 Problem: how do we
know how many pages
a process needs?

 Locality: a process
tends to access pages
in the same area of
the address space for
a while before moving
to another area

Locality
 The way to prevent

thrashing is to provide
each process with the
pages it needs

 easy, right?

 Problem: how do we
know how many pages
a process needs?

 Locality: a process
tends to access pages
in the same area of
the address space for
a while before moving
to another area

Working Set Strategy

 We can keep track of all the pages
referenced by each process during a
window of the last Δ memory references

 We call this the working set of the process
 The system keeps track of D, the sum of

the sizes of the working set of running
processes

 The system swaps out an entire process
when D is larger than the number of
available memory frames

 As a result, no thrashing happens

Working Set

Working Set

Loading the working set
(a bunch of pfs)

Working Set

Working with the working set
(rare pfs)

Page-Fault Frequency Strategy

 A much simpler approach than working set
estimation is to simply monitor the page fault rate

 We set upper and lower bounds on the page fault
rate of each process

 If the rate is above the upper bound, we give the
process another frame

 If the rate is below the lower bound, we take a page
away from the process

 If no new frame can be given to a process, we
simply suspend it and swap it out entirely

 Just like with the working set strategy

Memory-Mapped Files
 I/O is known to be very expensive

 Each access to the file requires disk access
 Disk seek and access times are very high

 With virtual memory, on-disk address space pages are brought
into RAM and written to disk later

 Why not do the same for files?
 Memory mapping: mapping a disk block to a memory frame

 Initial access to the file generates a page fault
 Subsequent accesses are in memory

 read() and write() are “tricked” into going to memory rather than the disk
 The on-disk file may be updated later, upon closing, etc.

 Memory mapping is via special system calls or by default
 e.g., Solaris memory maps all files (in user or kernel space)

 Multiple processes may map the same file concurrently

Memory Mapping and Sharing

Memory Mapping and Shared Memory
 Memory mapping can be used to implement shared memory

 In Linux, there are separate mechanisms for memory
mapping and shared memory

 mmap() vs. shmget(), etc.
 In Windows shared memory is implemented with memory

mapping as in the diagram above

Memory-Mapped I/O

 To access I/O devices, one can set aside
ranges of memory addresses

 Loads/Stores to these addresses cause
interaction with the device

 Convenient because then all memory-
mapped I/O devices look similar

Conclusion

 Virtual Memory:
 A process can be partially in memory

 Two key issues:
 Page replacement
 Frame allocation

 The thrashing problem and its solutions
 Memory-mapping for files or I/O

	Virtual Memory
	Virtual Memory
	Virtual Memory
	Demand Paging
	Valid/Invalid Bit
	Valid Bit Example
	Page Fault
	Page Fault
	Restarting a Process
	Virtual Memory Performance
	Fork() and Exec()
	Fork() and Exec()
	Copy-on-Write
	Copy-on-Write
	Page Replacement
	Page Replacement
	Page Replacement
	Page Replacement
	Page Replacement
	Page Replacement
	Page Replacement
	Page Replacement
	Page Replacement
	Page Replacement
	All pages are kept on disk
	Dirty Bit
	Policies
	Evaluating Page Replacement Algs
	FIFO Page Replacement
	Optimal Page Replacement
	LRU Page Replacement
	LRU Implementation
	Help from the Hardware
	Approximate LRU
	Second Chance
	Second Chance: Figure from Book
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Second Chance Example
	Performance Optimizations
	Frame Allocation Algorithms
	Frame Allocation
	NUMA Systems
	Global/Local Page Replacement
	Thrashing
	Thrashing
	Locality
	Locality
	Locality
	Working Set Strategy
	Working Set
	Working Set
	Working Set
	Page-Fault Frequency Strategy
	Memory-Mapped Files
	Memory Mapping and Sharing
	Memory Mapping and Shared Memory
	Memory-Mapped I/O
	Conclusion

